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Abstract

In this technical report we present the theoretical proof and experiment
details in our work, Sub-Gibbs Sampling: a New Strategy for Inferring
LDA. Latent Dirichlet Allocation (LDA) has been widely used in text
mining to discover topics from documents. One major approach to learn
LDA is Gibbs sampling. The basic Collapsed Gibbs Sampling (CGS)
algorithm computes conditional probabilities and draws topics for each
token, thus requires O(NZ) computations to learn an LDA model with
Z topics from a corpus containing N tokens. Existing approaches that
improve the complexity of CGS focus on reducing the factor Z.

In this work, we propose a novel and general Sub-Gibbs Sampling
(SGS) strategy to improve the Gibbs-Sampling computation by reduc-
ing the sample space. This new strategy targets at reducing the factor N
by sampling only a subset of the whole corpus. The design of the SGS
strategy is based on two properties that we observe: (i) topic distributions
of tokens are skewed and (ii) a subset of documents can approximately
represent the semantics of the whole corpus. We prove that the SGS
strategy can achieve comparable effectiveness (with bounded errors) and
significantly reduce the running time compared with CGS algorithms. Ex-
tensive experiments on large real-world data sets show that the proposed
SGS strategy is 2 ∼ 100 times faster than CGS and 2∼5 times faster than
several state-of-the-art fast Gibbs sampling algorithms. On a large data
set (PubMed), the SGS strategy can reduce the running time per iteration
of CGS from 5 hours to 0.5 hours. Experimental results verify that the
proposed SGS strategy can learn comparable LDA models as other Gibbs
sampling algorithms.

1 Introduction and Related Works

Latent Dirichlet Allocation (LDA) is a widely used topic model ever since its
introduction by Blei et al. [1]. Different methods, such as variational inference [1]
and Gibbs Sampling [2], are used to learn LDA models. A basic Collapsed Gibbs
Sampling (CGS) algorithm to infer the LDA model is introduced by Griffiths
et al. [2]. The complexity of this CGS is O(NZ) where N and Z are the total
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number of observed tokens and the number of latent topics in a text corpus
respectively. This O(NZ) complexity makes CGS very expensive to run on
large corpora.

To improve the basic CGS algorithm, many fast Gibbs sampling algorithms
(e.g., [3, 4, 5, 6, 7]) have been proposed in the literature. Porteous et al. [3] pro-
pose the FastLDA algorithm to improve the running time (not complexity) of
CGS by segmenting and rearranging the conditional probabilities. Yao et al. [4]
design the SparseLDA algorithm and reduce the complexity to O(N(Zw +Zd))
where Zw is the number of distinct topics that are assigned to a token w, Zd is
the number of distinct topics that are assigned to w’s corresponding document
d, and Zw + Zd is generally smaller than Z in practice. SparseLDA utilizes an
observation that word-topic and document-topic count matrices in Gibbs sam-
pling are sparse. Li et al. [5] design an O(NZd) approximate sampling algorithm,
AliasLDA, by combining the Metropolis-Hasting sampling and the alias table
method [8]. Yuan et al. [7] further improve AliasLDA by approximating more
probability components and propose the LightLDA algorithm with an O(N)
complexity. Yu et al. [6] design the F+Nomad LDA Gibbs sampling algorithm
with an O(N logZ) time complexity by utilizing the Fenwick tree [9] data struc-
ture. All these works focus on reducing the factor Z through efficient calculation
and maintenance of conditional probabilities. Previous works [3, 4, 6] are exact
Gibbs sampling, and [5, 7] are approximate sampling with Metropolis-Hasting
sampling. They generally converge to the same (or very similar) results. The
choice of using different algorithms to infer LDA mainly differs on efficiency.

In this paper we propose a totally new and general strategy, Sub-Gibbs Sam-
pling (SGS), to improve Gibbs sampling algorithms for LDA inference by re-
ducing the sample space. I.e, we target at reducing the factor N . SGS is based
on two properties which are not utilized in previous works.

• Skewed topic distributions. In LDA models, multiple occurrences of one token
in a document are assigned with a few distinct topics, and the majority of the
occurrences is assigned with the same topic. Note that this property is very
different from the parameter-sparsity property used in previous research [5, 4,
7]. The difference is explained in more details in Section 3.1.

• Approximate semantics. The semantics of a corpus can be approximately
represented by a small subset of the documents. In this paper “semantics”
represents the set of distinct tokens (vocabulary) in a corpus. The documents
in this representative subset is called covered-documents and the remaining
documents are called uncovered-documents.

These two properties are presented in details in Section 3. Utilizing these two
properties SGS is designed to run a base Gibbs sampling (i) on a small subset of
tokens (instead of all the tokens); (ii) on covered-documents for more iterations
than on uncovered-documents.

The contributions of this work are as follows.

• We identify two new useful properties in LDA models, the skewed topic
distributions and the approximate semantics, which have not been utilized
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before.

• Utilizing the two properties, we propose a novel and general Sub-Gibbs
Sampling (SGS) strategy to reduce the sampling space of existing Gibbs
sampling algorithms.

• We conduct extensive experiments on four real-world data sets (ranging
from small to large). Comparison between the proposed SGS strategy and
state-of-the-art fast Gibbs sampling algorithms demonstrates that SGS
reduces the running time significantly (2∼5 times faster) and achieves
similar effectiveness.

In what follows, Section 2 introduces the background of LDA and CGS. Section 3
explains the two properties and the proposed SGS strategy. Section 4 presents
the experimental results and analysis. Section 5 reviews related works. Section 6
concludes this work.

2 Background and Notations

1. For each latent topic zi, i ∈ {1, 2, . . . , Z}, draw
~φi ∼ Dirichlet(β)

2. For each document di, i ∈ {1, 2, . . . , D}

(a) Draw ~θi ∼ Dirichlet(α)

(b) For j ∈ {1, 2, . . . li}. li is the length of document
di

i. Draw the latent topic zij ∼ multinomial(~θi)
ii. Draw the observed word wij ∼

multinomial(~φzij )

Figure 1: Generative Process of LDA [1]

Latent Dirichlet Allocation (LDA) is introduced in [1] as a generative prob-
abilistic model to learn topics in text corpora. LDA assumes that the observed
tokens in each document are generated from a mixture (document-to-topic dis-
tributions θ) of several multinomial distributions (topic-to-word distributions
φ). The detailed generative process of LDA is in Fig. 1. The Collapsed Gibbs
Sampling (CGS) algorithm [2] is a widely accepted approach to estimate pa-
rameters in LDA. CGS estimates latent topics for tokens by iteratively drawing
samples for each token from conditional probabilities. The CGS algorithm is
shown in Fig. 2. The notations of LDA and CGS are listed in TABLE 1.

In the generative process of LDA (Fig. 1), ~φi is a W -dimensional vector rep-
resenting the probability of each token (in total W distinct tokens in the corpus)

under topic zi, and ~θi is a Z-dimensional vector representing the probability of
each topic (in total Z topics) being assigned to document di. The multinomial
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1. For each iteration i = 1, 2, · · ·
(a) For each token w in each document d

i. Let z be the topic assignment to w in the pre-
vious iteration

ii. Decrement ndz, nd, nwz, nz by one
iii. Sample a new topic z for w from a multinomial

distribution p(z = k|¬z), k ∈ {1, 2, . . . , Z}

(1) p(z = k|¬z) ∝
nwk + β

nk +Wβ
·
ndk + α

nd + Zα

iv. Increment ndz, nd, nwz, nz by one

Figure 2: Basic Collapsed Gibbs Sampling (CGS) algorithm to learn LDA [10]

distribution parameters ~θi and ~φi have Dirichlet priors whose hyper-parameters
are α and β respectively. To generate the jth token wij in document di, la-

tent topic zij is first drawn from multinomial(~θi), then wij is drawn from

multinomial(~φzij ). In LDA tokens are observed variables, and other variables
are latent variables.

Given the generative process in Fig. 1, Griffiths et al. [2] design a CGS
algorithm (Fig. 2). CGS runs for many iterations. In each iteration, it maintains
the sample counts for document d (nd), the sample counts for topic z (nz), the
times that topic z is assigned to token w (nwz), and the times of sampling topic
z for document d (ndz). In each iteration the topics of all the tokens are redrawn
from the topics’ conditional probabilities which are calculated as Eq. (1).

3 Sub-Gibbs Sampling Strategy

This section presents the strategy of Sub-Gibbs Sampling (SGS). SGS uti-
lizes two properties in LDA models to reduce the sample space: (i) tokens have
very skewed topic distribution patterns, and (ii) the semantics of a corpus can
be approximated using a subset of documents. We denote these two properties
as Skewed Topic Distributions and Approximate Semantics. The idea of
SGS is using a subset of tokens in a document and a subset of documents in a
corpus to learn LDA models. The proposed SGS strategy is designed in a general
way so that it can be applied to any Gibbs sampling algorithms for LDA. We
explain these two properties and the corresponding algorithms in Sections 3.1
and 3.2.

3.1 SGS Utilizing Skewed Topic Distributions

We conduct a pre-study to examine the topic distributions of tokens and find
some interesting patterns. In this pre-study, we run the CGS algorithm on the
NYTimes data set (the statistics is shown in TABLE 3) with Z = 100. After
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Symbol Meaning

α, β Hyper-parameters of Dirichlet distribution
~θi Multinomial topic distribution of document di
~φi Multinomial word distribution of topic zi
D # of documents
W # of distinct tokens (vocabulary size)
N Total # of tokens in the corpus
Z # of latent topics
di The ith document in the corpus
li The length of the document di
wij The jth token in the document di
zij The latent topic of the token wij
ndz # of times that topic z is assigned to document d
ndw # of times that token w occurs document d
nd Total # of tokens in document d
nwz # of times that topic z is assigned to token w
nz # of times that topic z is assigned for the corpus

Table 1: Notations for LDA and CGS

CGS terminates, we group tokens by their term frequency (tf) and examine the
topic distribution of tokens in each group. Let the group of tokens with tf = m
be denoted as Gm. I.e., Gm = {wij |i ∈ 1 . . . D, j ∈ 1 . . . li, ndiwij = m}, where
ndw represents the times that a token w occurs in a document d. The topic
distribution of tokens in the token group Gm is the proportion of tokens that
are assigned with Z ′(≤ Z) distinct topics, which is calculated as

r(Z ′,m) =

∣∣{wij

∣∣wij∈Gm, |{zij′ |j
′∈1...li, wij′=wij}|=Z′

}∣∣
|Gm| . We plot the topic distri-

butions of tokens with different term frequencies for several m values in Fig. 3.
The first observation on these distributions is that multiple occurrences (tf =

m) of the same token in a document are only assigned with a few distinct (much
fewer than min(m,Z)) topics. The second observation is that the distribution
of the number of distinct topics is very skewed. In particular, we observe that
(as shown in Fig. 3) the probability of assigning only one topic to multiple
occurrences of a token is about 50%. These observations indicate that if a
token w occurs ndw times in a document d, it is highly probable (about 50%
chance) that these ndw tokens are assigned with one topic. We denote such
observations as the property of skewed topic distributions. Previous research
works [5, 4, 7] utilize the sparsity in parameters nwz and ndz to design fast
Gibbs sampling algorithms. This parameter-sparsity property denotes that as
the sampling process proceeds most elements in nwz, ndz become zero. Our
skewed topic distributions property is very different. We study the effect of the
sparsity on the distributions of the number of distinct topics, and we discover
that for the multiple occurrences of the same token the number of distinct topics
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Figure 3: Topic distribution patterns learned by CGS for several token groups
on NYTimes data set with Z = 100; tf = X represents GX

is usually very small.
The property of skewed topic distributions suggests that, when running CGS

to learn LDA, it is unnecessary to sample each individual occurrence of a token.
Instead, we can draw one topic and assign this topic to several occurrences of a
token in one sampling step.

We propose the SGS strategy by utilizing the skewed topic distribution prop-
erty in Fig. 4. The SGS strategy takes as input (a) a base Gibbs sampling algo-
rithm for LDA (GS), which can be any existing LDA Gibbs Sampling algorithm,
and (b) a group partition algorithm (GP ), which is explained in Section 3.1.1.
It works in two steps. The first step partitions the multiple occurrences of to-
ken w, whose term frequency is m, into s (s ≤ m) groups g1, g2, . . . , gs of size
m1,m2, . . . ,ms (

∑s
i=1mi = m) by utilizing GP . The second step samples one

representative topic for each group gi with si occurrences of token w by calling
GS. These two steps are repeated on all the distinct tokens in each document.
This strategy can reduce the time complexity of sampling m occurrences of a
token from O(Zm) to O(Zs) (s < m) if CGS is taken as the base GS. For
other fast Gibbs sampling algorithms for LDA whose time complexity for sam-
pling each token is Zf (< Z), applying SGS with the skewed topic distribution
property on GS can reduce the time complexity of sampling m occurrences from
O(Zfm) to O(Zfs). To differentiate a base Gibbs Sampling algorithm (GS) and
a GS algorithm implementing the SGS strategy, we denote a base GS algorithm
implementing the SGS strategy as an SGS algorithm in later discussions.

Please note that the behavior of an SGS algorithm is different from its corre-
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Input: base Gibbs sampling algorithm for LDA (GS),
group partition algorithm (GP)

1. For each iteration i = 1, 2, · · ·
(a) For each distinct token w in each document d

i. Partition m occurrences of w into groups
g1, g2, . . . , gs of size m1,m2, . . . ,ms (

∑s
i=1mi =

m) utilizing GP

ii. For each group gi for token w

A. Let z be the topic assignment to gi in the
previous iteration

B. Decrement ndz, nd, nwz, and nz by mi

C. Sample z for gi using GS

D. Increment ndz, nd, nwz, nz by mi

Figure 4: SGS utilizing skewed topic distributions

sponding base GS. However, an SGS algorithm differs slightly from the behavior
of the corresponding base GS algorithm (with bounded errors). The analysis of
this bounded error is presented in Section 3.1.2.

3.1.1 Group Partition Algorithm

We design a uniform size group partition (USGP) algorithm. In USGP, a sub-
sampling ration q ∈ [0, 1.0] is defined to control the group size. Given q, the
m occurrences of a token is partitioned into s groups. The group sizes are
dmqe, dmqe, . . . ,m − (s − 1)dmqe. If dmqe < 1, we put all m occurrences into
one group. Given m, larger subsampling ratio q generates fewer groups with
larger group size dmqe. Even USGP generates uniform size groups, the LDA
model learned by SGS algorithms that utilize USGP still shows skewed topic
distribution patterns. To verify this, we plot the topic distributions learned by
the SGS algorithm with CGS as the base GS in Fig. 5. We can observe that
the topic distributions of these tokens are still skewed. This is consistent with
the trend of models learned by CGS in Fig. 3. We also observe that the SGS
algorithm learns more skewed topic distributions than CGS. This is consistent
with the intuition that group partitioning causes less number of distinct tokens
to be sampled. Furthermore, the distribution for larger tf is more skewed. This
is because the group size for smaller tf after group partitioning is smaller than
the group size for larger tf . In the future, we will explore better group partition
algorithms that can preserve the topic distributions.
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Figure 5: Topic distribution patterns learned by SGS algorithms (base GS =
CGS, q = 0.2) on NYTimes data set with Z = 100

3.1.2 Error Bound Analysis

The sampling process of an SGS algorithm and its corresponding base GS algo-
rithm (as shown in Fig. 2 and Fig. 4) are different. However, it has shown [11]
that it is intractable to derive their accumulated difference through the whole
sampling process because of the chain structure of MCMC algorithms. It is
hard to reason the degree in which an SGS algorithm biases from GS at the end
of the sampling process because, when sampling for each token, an SGS algo-
rithm and its corresponding GS may assign different topics for the same token.
The different topic assignments in one step may lead to different conditional
probabilities in the remaining sampling iterations.

Nevertheless, to get a basic idea of the error that the subsampling brings, we
analyze the difference between an SGS algorithm and its corresponding base GS
in the sampling process for one token. We define δdw to be the difference between
the conditional probabilities of an SGS algorithm and its corresponding GS that
sample a token w in a document d. We are going to prove that starting from
the same initial configuration, an SGS algorithm only biases from GS within a
bounded error in one sampling step. Formally, we define δdw = ||p − p′||1, in
which p′ and p are conditional probabilities (Eq. (1)) of an SGS algorithm and its
corresponding GS respectively. We prove that, given the same count matrices
(ndz, nwz, and nz), δdw has a limited upper bound which is proportional to the
group size (which is linear in the subsampling ratio q).

We assume that before sampling for token w in document d, an SGS algo-
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rithm and GS has the same count matrices (ndz, nwz, and nz), and token w is
assigned with topic z = ki in the previous iteration. In particular, we assume
that the group on which the SGS algorithm is sampling has mi tokens. Then
the conditional probability of GS to sample different topics for a token w is
shown as below:

p =

(
nk1w + β

nk1 +Wβ
· ndk1 + α

nd + Zα
, . . . ,

nkiw + β − 1

nki +Wβ − 1
· ndki + α− 1

nd + Zα− 1
, . . . ,

nkZw + β

nkZ +Wβ
· ndkZ + α

nd + Zα

)
The conditional probability of the SGS algorithm to sample different topics

for a token w is

p′ =

(
nk1w + β

nk1 +Wβ
· ndk1 + α

nd + Zα
, . . . ,

nkiw + β −mi

nki +Wβ −mi
· ndki + α−mi

nd + Zα−mi
, . . . ,

nkZw + β

nkZ +Wβ
· ndkZ + α

nd + Zα

)
p and p′ are Z-dimensional vectors. pi and p′i represent probabilities (calcu-

lated using Eq. (1)), with which w is assigned topic ki in GS and SGS respec-
tively.

Before proceeding to analyze δdw, we introduce a theorem which is used in
our proof.

Definition 1. The Hilbert’s projective metric between two vectors v, v′ is defined
as [12]:

(2) d(v, v′) = max
i,j

(log(
vi
v′i

)− log(
vj
v′j

))

Theorem 1. Let v and v′ be positive vectors with unit sum, the L1 norm of
v − v′ is bounded by [12]:

(3) ||v − v′||1 =
∑
i

|vi − v′i| ≤ |1− eε| = ε+O(ε2)

where ε = d(v, v′).

Theorem 1 states that the sum of the absolute difference between vi and v′i
is upper bounded by ε+O(ε2), in which O(ε2) is a much small term comparing
to ε and is less than aε (a is a constant factor) because ε ≤ 1. Using Theorem 1,
we can derive the upper bound of δdw as below:
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Proof. δdw has a small upper bound

δdw = ||p− p′||1 ≤ ε+O(ε2) = ε+ aε2 < (1 + a)ε

= (1 + a) max
i,j

(log(
pi
p′i

)− log(
pj
p′j

))

= (1 + a) log
( nkiw + β − 1

nkiw + β −mi
· nki +Wβ −mi

nki +Wβ − 1

· ndki + α− 1

ndki + α−mi
· nd + Zα−mi

nd + Zα− 1

)
= (1 + a) log

C3C4

C1C2

where C1 =
nkiw + β −mi

nkiw + β − 1
, C2 =

ndki + α−mi

ndki + α− 1
,

C3 =
nki +Wβ −mi

nki +Wβ − 1
, C4 =

nd + Zα−mi

nd + Zα− 1

Thus, δdw < (1 + a) log
C3C4

C1C2

δdw is bounded by a small and positive upper bound (1 + a)ε which is close
to 0. We get this bound by analyzing the value range of the C factors using
NYTimes data set as an example. Factors C3 and C4 are close to 1.0 because mi

is a very small number comparing to nki (about 1M on average) and nd (about
300 on average). C1 and C2 are also close to 1.0 because the averaged values of
nkiw and ndki are around 200 and 40 respectively, which are also larger than mi.
Given the typical values of nki , nd, nkiw, and ndki , we can get that C1 < C3 and
C2 < C4. Thus, C3C4

C1C2
> 1 and δdw is bounded by a small and positive value.

On other data sets, the average values of these C factors scale corresponding to
the size of the data set, and δdw is bounded in a similar manner.

We further explore how the subsampling ratio q affects the error bound of
SGS algorithms by calculating the derivative of ε over mi.

∂ε

∂mi
=

1

nkiw + β −mi
− 1

nki +Wβ −mi︸ ︷︷ ︸
>0

+
1

ndki + α−mi
− 1

nd + Zα−mi︸ ︷︷ ︸
>0

⇒ ∂ε

∂mi
> 0

A positive derivative shows that ε grows with the group size mi which is linear in
the subsampling ratio q as we discuss in Section 3.1.1. We verify this conclusion
in Section 4.
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3.2 SGS Utilizing Approximate Semantics

The SGS utilizing skewed topic distributions has a limitation in reducing N
since this strategy creates one group for tokens that occur only once. To further
reduceN we propose the SGS utilizing approximate semantics which is described
in the remaining of this section.

The document-word representation of a corpus can be viewed as a bipartite
graph. Fig. 6 shows an example of a small corpus which contains 4 documents
and 7 distinct tokens. The edge from di to wj means that document di contains
word wj . Let us use semantics to denote the set of distinct tokens (vocabulary)
in the corpus. The idea of approximate semantics is inspired by the observation
that a few documents can cover the overall semantics of a corpus. We use
the data set NYTimes as an example to illustrate this idea. We first sort the
documents in NYTimes by their number of distinct tokens in descending order.
Let the number of distinct tokens in the first i documents be Wi. Recall that the
total number of distinct tokens in the whole corpus is W . Then, we plot Wi

W in
Fig. 7(a). As we can see in Fig. 7(a), a small fraction of the documents (about
10,000 out of 300,000 ≈ 3%) covers the semantics of the whole NYTimes corpus.
This observation indicates that the semantics of a corpus can be approximately
represented by a small subset of documents.

d1 d2 d3 d4

w1 w2 w3 w4 w5 w6 w7

1

Figure 6: Bipartite representation of a small corpus
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Figure 7: Approximate semantics observations

A natural question following this observation is which subset of the corpus
we should choose to approximately represent the semantics of the corpus. We
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formulate the problem of choosing the representative subset of documents from
a corpus as a set cover problem on a bipartite graph. The document-word rep-
resentation of a corpus is formulated as a bipartite graph G = (V,E). The
graph has two types of nodes V = D ∪ W, in which D = {d1, d2, · · · , dD} is
the set of documents and W = {w1, w2, · · · , wW } is the set of distinct tokens.
A graph edge (di, wj) ∈ E indicates that document di contains token wj . To
find a document subset to represent the semantics of the corpus, we adopt the
greedy set cover algorithm [13] to find a subset of documents that contains all
the distinct tokens in the corpus. The greedy set cover algorithm works in an
iterative way. Initially the representative set is empty. In each iteration, the
greedy algorithm first adds the document that contains the most distinct tokens
into the representative set; then the added document and tokens contained in
this document are removed from the graph. This process is repeated until all
distinct tokens are contained in the representative set. Recall that the docu-
ments in the representative set are called covered-documents, which are used
through the whole sampling process, and the remaining documents are called
uncovered-documents, which are sampled in fewer iterations. For example, if we
run the greedy set cover algorithm on the corpus shown in Fig. 6, the covered-
documents are {d1, d3, d2}.

To show that the covered-documents can approximately represent the se-
mantics of a corpus, we designed two experimental tests to run CGS for one
iteration on the NYTimes data set. In test-1, we randomly arrange the order
of documents that are sampled. In test-2, we control the order of sampling
by putting the covered-documents before the uncovered-documents. The differ-
ences between the log-likelihood of the LDA models learned by CGS with these
two tests (values of test-2 minus the values of test-1) are shown in Fig. 7(b). We
can observe that the differences grow faster on the first 12K documents, which
is the approximate number of covered-documents. This means that the CGS
that samples covered-documents first has a higher log-likelihood. It indicates
that the covered-documents contain more information (semantics) of the cor-
pus. This observation suggests that, during the sampling process of the whole
corpus, we can focus on sampling the covered-documents first and reduce the
number of iterations to sample uncovered-documents. If CGS runs on covered
documents alone, the semantics will be lost too much compared with the results
from the complete corpus. So the SGS strategy should still use the complete
documents, but sample uncovered-documents for fewer times.

Fig. 7 also shows that, at the end of one iteration, the llh-value difference
between the Gibbs sampling algorithms with different sampling orders is almost
zero, which shows the validity of the proposed strategy. [14] proves that the
sampling order affects the model convergence time and does not affect the cor-
rectness for some models although there is no general theoretical conclusion on
whether changing the sampling order of tokens will affect the the correctness of
Gibbs sampling algorithm for LDA, which will be an interesting future work.

The SGS strategy utilizing the approximate semantics property is shown in
Fig. 8. For this strategy, we define a subsampling ratio r ∈ [0, 1.0] to control
the frequency that a GS algorithm runs on uncovered-documents. This strategy
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Input: bipartite graph representation of a corpus
G = (V,E) in which V = D∪W, base Gibbs sam-
pling algorithm for LDA GS, subsampling ratio r

1. Use greedy set cover algorithm [13] to find a subset
of documents S that covers the semantics of G

2. For each iteration i = 1, 2, · · ·
(a) Run GS on S

(b) If i mod (10 ∗ r) = 0, run GS on D − S

Figure 8: SGS utilizing approximate semantics

works as follows. It first uses a greedy set cover algorithm to find the repre-
sentative subset S. It then runs a base Gibbs sampling algorithm GS on S in
each iteration. If the iteration number i satisfies that i mod (10 ∗ r) = 0, GS
also runs on uncovered-documents D − S. This means that GS runs on D − S
every 10 ∗ r iterations. In this way, the SGS algorithm skips sampling D − S
in some iterations, which saves the running time significantly. We limit the
subsampling ratio r in range [0, 1.0] and set the consistent factor as 10 because
out experiments show that when 10∗ r > 10 the effectiveness of SGS algorithms
is unacceptable. Assuming that each document has L words on average and
the base GS algorithm has complexity O(Zf ) for sampling each token, then the
complexity of the base GS algorithm is O(DLZf ) and the corresponding SGS
algorithm has complexity O((|S|+(D−|S|)∗ 1

10∗r )LZf ). Because the uncovered-
documents, D − S, are only sampled every 10 ∗ r iterations and S is a small
subset of D, |S|+ (D−|S|)∗ 1

10∗r � D, which means that the complexity of the
SGS algorithm is much lower than the complexity of the base GS algorithm.

Data set D |S| Running time (s)
NIPS 1,500 611 5
Enron 37,861 1,640 25

NYTimes 300,000 10,680 1,162
PubMed 8,200,000 21,095 37,447

Table 2: Set cover algorithm running time

The running time of the greedy set cover algorithm on four data sets is shown
in TABLE 2. The running time of the greedy set cover algorithm on large data
sets, NYTimes and PubMed, is about 20 minutes and 10 hours. This time seems
long. However, it is approximately the same as the running time of one CGS
iteration on the large data sets. Furthermore, the discovered representative set
can be reused for any SGS algorithms with different parameter settings.
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3.3 Discussions

We use sgs GS(q, r) to denote the SGS algorithm utilizing the skewed topic
distribution property with subsampling ratio q and the approximate semantics
property with subsampling ratio r. GS denotes the input base Gibbs sampling
algorithm. In particular, sgs GS(q, 0) denotes the base GS that only imple-
ments the skewed topic distribution property, sgs GS(0, r) denotes the base
GS that only implements the approximate semantics property. To achieve the
maximum speedup with the skewed topic distribution property, we set q = 1.0
which means that we only sample once for m occurrences of a token. Similarly,
to achieve the maximum speedup with the approximate semantics property, we
set r = 1.0 which means that for every 10 iterations the uncovered-documents
are sampled once. We limit r ≤ 1.0 because higher r value results in bad
effectiveness.

We demonstrate and verify the effect of the subsampling ratios q and r on
the algorithm efficiency in Section 4. From the model learning perspective, the
higher subsampling ratios q and r mean the fewer tokens and documents are
sampled respectively. This reduces the effectiveness of the learned LDA model.
The sampling error of the SGS strategy utilizing the skewed topic distribution
property is proved in Section 3.1.2. The effect of subsampling ratios q and r
on various effectiveness measures is presented and verified in Section 4. In real
applications, it is a tradeoff to choose proper subsampling ratios q and r to
have an expected improvement on efficiency and acceptable effectiveness. The
suggestions on choosing p and r are summarized in the end of Section 4.

4 Experiments

We implement the proposed SGS strategy on four Gibbs sampling algorithms,
CGS [2], SparseLDA [4], AliasLDA [5], and F+Nomad LDA [6]. We do not
compare with any Gibbs samplings algorithms that are particularly designed
for parallel or distributed environment (Section 5) because that is not the focus
of this paper. SparseLDA and F+Nomad LDA are state-of-the-art fast Gibbs
sampling algorithms for LDA. AliasLDA is not a Gibbs sampling algorithm,
but is a more general Metropolis Hastings sampling algorithm for LDA. These
four algorithms are used as the base Gibbs sampling algorithm (GS) to apply
the SGS strategies in Fig. 4 and Fig. 8. They are denoted as cgs, splda,
alias, and flda respectively. The Gibbs sampling algorithms implementing
the SGS strategy are denoted as sgs cgs, sgs splda, sgs alias, and sgs flda
respectively, which are called sgs GS or SGS algorithms in later discussions.
All the implementations are based on the open-source code in [6], and all the
experiments are conducted on a workstation configured with Intel(R) Xeon(R)
core (2.40GHz) and 256G RAM, running CentOS 6.5.
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4.1 Data Sets

We conduct extensive experiments on four data sets, NIPS, ENRON, NYTimes,
and PubMed, which are downloaded from UCI Bag of Words data collection [15].
The statistics of these data sets are shown in TABLE 3.

Data set W D N

NIPS 12,419 1,500 746,316
ENRON 28,102 37,861 3,710,420
NYTimes 102,660 300,000 69,679,427
PubMed 141,043 8,200,000 483,450,157

Table 3: Statistics of data sets

4.2 Evaluation Measures and Parameter Settings

1. Log-likelihood (llh). Log-likelihood is widely utilized to measure the
effectiveness of model inference algorithms (e.g., [16, 6, 7]). Note that confidence
intervals on llh are hard to derive. We run the experiments with the same setting
multiple times and get a range of llh to approximate the confidence intervals;
however, the ranges are extremely small compared to the absolute llh values.
Thus, we follow the convention in other works to report llh only. We use the
likelihood defined in [16] which is shown as follows.

p(w, z|α, β) =
( D∏
i=1

∏Z
j=1 Γ(α+ ndizj )

Γ(Zα+ ndi)

)
·
( Z∏
i=1

∏W
j=1 Γ(β + nwjzi)

Γ(Wβ + nzi)

)
We define log-likelihood ratio (llh-ratio) to measure the effectiveness differ-

ence between GS and sgs GS. The llh-ratio of sgs GS over GS is defined
as

llh-ratio(sgs GS,GS) = abs
( llh(sgs GS)− llh(GS)

llh(GS)

)
Smaller llh-ratio indicates sgs GS and GS have similar llh.
2. KL-divergence. Log-likelihood only gives an overall estimation of the
effectiveness of inference algorithms. It does not verify the quality of the learned
topics. To further examine whether sgs GS can learn similar topics as what GS
learns, we utilize KL-divergence. Given that ~φi = (φi1, φi2, . . . , φiW ) (a topic

learned by GS) and ~φ′j = (φ′j1, φ
′
j2, . . . , φ

′
jW ) (a topic learned by sgs GS), the

KL-divergence from ~φ′j to ~φi is defined as Ki,j =
W∑
w=1

φiw ln φiw

φ′
jw

.

3. Running time and speedup ratio. To measure how SGS strategy im-
proves GS in efficiency, we record the average running time per iteration. We
also calculate speedup ratios of sgs GS and GS algorithms over cgs algorithm.
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Overlapping ratio
Algorithm Top-2 words from 10 topics in top-10 words

cgs function, neuron, network, algorithm,
image, object, system, cell, circuit,
speech, learning, error, model, data,
signal, unit

1.0

sgs cgs(0.2, 0) function, training, neuron, word,
network, algorithm, image, object,
system, cell, circuit, set, learning,
input, model, data

0.82

sgs cgs(0.4, 0) function, set, point, image, neu-
ron, noise, learning, data, recogni-
tion, training, network, algorithm,
equation, system, cell, vector, unit,
model

0.81

sgs cgs(0.6, 0) function, control, training, object,
word, network, neural, image, neu-
ron, system, cell, set, learning, in-
put, model, data, recognition

0.80

sgs cgs(0.8, 0) function, control, training, set, net-
work, algorithm, image, neuron,
system, cell, learning, output, input,
model, data, unit

0.79

sgs cgs(1.0, 0) function, control, set, image, ob-
ject, learning, data, recognition, net-
work, neural, pattern, presented, sys-
tem, cell, memory, model, neuron

0.78

Table 4: Representative words of cgs and sgs cgs on NIPS (Z = 10); overlapped
words are highlighted

4. Parameter Settings. We set α = 50/Z and β = 0.01, which are also
used in [6]. All sgs GS and GS run 200/70/40 iterations on (NIPS, En-
ron)/NYTimes/PubMed data sets. Because cgs runs too slow on large data
sets, fewer iterations are used on large data sets.

4.3 Effectiveness Analysis

In this section, we show that the proposed SGS algorithms can learn similar
models as the corresponding base Gibbs sampling algorithms. We also examine
the effect of subsampling ratios q and r on the effectiveness of SGS algorithms.

First, we examine the quality of the topics learned by SGS algorithms. Let
the topics learned by cgs and sgs cgs(q, 0) with q = 0.1, 0.5, and 1.0 be denoted
as φ, φ′0.1, φ′0.5, and φ′1.0 respectively. Fig. 9 shows the KL-divergence matrix of
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Figure 9: KL-divergence matrix from φ′ (learned by sgs cgs) to φ (learned by
cgs) on NIPS (Z = 10)

the NIPS data set. The ith row and jth column of the KL-divergence matrix1

represents the KL-divergence from ~φ′j to ~φi. Dark pixels represent similar topic
pairs, and light pixels represent dissimilar topic pairs. We observe that, as the
subsampling ratio q grows, more dark pixels are off the diagonal. This trend
denotes a worse matching from the learned topics of sgs GS with higher sub-
sampling ratio q to the topics learned through GS. This trend is consistent with
the analysis in Section 3.3. In TABLE 4 we show the representative words of
the topics learned from the NIPS data set (Z = 10) using cgs and sgs cgs(q, 0).
The second column of TABLE 4 shows the top-2 words of the 10 topics learned
by sgs cgs and cgs. The third column of TABLE 4 shows the ratio of over-
lapping words in the top-10 words for the 10 topics. When the subsampling
ratio q increases, the overlapping words become less and the overlapping ratio
decreases.

Second, we examine how the subsampling ratio q affects the effectiveness of
SGS algorithms. Fig. 10(a) and Fig. 10(c) show the llh trends of sgs cgs(q, 0)
and cgs over iteration and time on the NYTimes data set, where q varies from 0.2
to 1.0. From Fig. 10(a) we can observe that the models learned by sgs cgs(q, 0)
and cgs have similar llh values at the end. Fig. 10(c) shows that sgs cgs(q, 0)

1Topic id is reordered to find a one-to-one match.
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Figure 10: Log-likelihood trend over iterations and wall time of sgs cgs(q, r)
and cgs on NYTimes (Z = 1000)

can achieve higher llh than cgs within the same amount of time and sgs cgs(q, 0)
converges faster than cgs. The sgs GS algorithms with other base GS show
similar patterns. This demonstrates that SGS algorithms can learn models that
are similar to the models learned by the base GS algorithms and converge as
the base GS algorithm. We further examine llh-ratio(sgs GS, GS) which is
shown in Fig. 11 (with Z = 1000). We can observe that llh-ratio(sgs GS, GS)
is higher when the subsampling ratio q is greater. This indicates that sgs GS
with higher subsampling ratio q learns a LDA model whose llh is more biased
from that of GS. We should note that the absolute llh-ratio of sgs GS(q, 0) is
still very small (less than 4%) which indicates that sgs GS(q, 0) can achieve
very similar llh as GS. This is because fewer groups are sampled. This result is
consistent the analysis in Section 3.3. In Fig. 12, we also plot the average δdw
for all distinct tokens in all documents (the sampling error) which is derived
in Section 3.1.2. It can be observed that greater subsampling ratio q results in
larger δdw. Nevertheless, the averaged sampling error δdw is still relatively small
(less than 0.08) on all the data sets.

Third, we examine how the subsampling ratio r affects the effectiveness of
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Figure 11: llh-ratio v.s. subsampling ratio q (Z = 1000)

SGS algorithms. Fig. 10(b) and Fig. 10(d) show the llh trends of sgs cgs(0, r)
and cgs over iteration and time where r varies from 0.2 to 1.0. From Fig. 10(b)
we can observe that sgs cgs(0, r) with the lower subsampling ratio r learns
models with the more similar llh as the models learned by cgs. sgs cgs(0, r)
shows a zig-zag llh trend because cgs runs on uncovered-documents every 10 ∗ r
iterations in sgs cgs. Fig. 10(d) shows that sgs cgs(0, r) achieve lower llh than
cgs within the same amount of time and sgs cgs(0, r) still converges as the cgs
finally. We also observe that the final llh of sgs cgs(0, r) with higher subsam-
pling ratio r is biased more from cgs. To study the effect of r on effectiveness
of SGS algorithms, we present the llh-ratio(sgs GS, GS) in Fig. 13 with fixed
q = 1.0 and various r. We can observe that higher r results in larger ratios.
This result is consistent with our analysis: higher r indicates that SGS GS
runs fewer iterations on the uncovered-documents, which negatively affects the
llh of the learned model. We note that on large data sets, high subsampling
ratio r results in relatively unacceptable llh-ratio (≥ 0.1). We also observe that
the subsampling ratio r has stronger effect on the llh than the subsampling ratio
q. The reason is that SGS utilizing approximate semantics samples much fewer
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Figure 12: Average sampling error δdw v.s. subsampling ratio q (Z = 1000)

tokens (basically much fewer documents) than the SGS utilizing skewed topic
distributions. The fewer sampled tokens indicate that the stronger r affects the
results.

4.4 Efficiency Analysis

Fig. 14 compares the average running time per iteration of sgs GS(q, r) and GS
on four data sets. We can observe that sgs GS uses much less time than GS. We
investigate how the subsampling ratio q affects the efficiency of SGS algorithms.
The speedup ratios of sgs GS(q, 0) and GS over cgs are shown in Fig. 15. First,
sgs GS(q, 0) consistently has higher speedup ratio than the corresponding GS.
It means sgs GS(q, 0) is faster than GS. Second, when q grows, the speedup
ratio also grows because higher q means that less groups (more tokens within
one group) are sampled in every iteration. Note that the trend of alias and
splda is consistent with the experimental results in [6] because we use the
implementation of in [6]. We also note that this trend is different from [5];
without the specific implementations of [5], it is hard to repeat their results.
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Figure 13: llh-ratio v.s. subsampling ratio r (Z = 1000)

We also examine how the subsampling ratio r affects the efficiency of SGS
algorithms. The speedup ratios of GS and sgs GS(1.0, r) over cgs are shown in
Fig. 16. The figure shows that sgs GS(1.0, r) consistently has higher speedup
ratio than the corresponding GS. In addition, when r grows, the speedup ratio of
sgs GS(1.0, r) also grows. These are consistent with our analysis in Section 3.3:
a higher r means that uncovered-documents are sampled in fewer iterations.

Finally, we check the efficiency of sgs GS under different model complexi-
ties Z. We vary Z and fix the subsampling ratios q = 1.0 and r to be 0 and
0.3, which is a balanced choice between effectiveness and efficiency. On NIPS,
Enron, and NYTimes data sets, Z varies from 2000 to 10000. On the PubMed
data set, Z varies from 1000 to 5000 due to the limitation of RAM size. The
speedup ratios of GS and sgs GS over cgs are shown in TABLE 5. On all data
sets, the speedup ratios of splda, alias, and flda increase when Z increases.
This is consistent with the design of these methods [5, 4, 6]. Overall the sgs GS
algorithms significantly improves the corresponding GS algorithms. On small
data sets (NIPS and Enron), sgs GS(1.0, 0) is about twice faster than the corre-
sponding GS, and sgs GS(1.0, 0.3) is 3 ∼ 4 times faster than the corresponding
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Figure 14: Comparison of average running time per iteration (Z = 1000)

GS. On large data sets (NYTimes and PubMed), the improvement on running
time is also significant. sgs splda(1.0, 0) and sgs flda(1.0, 0) are 50% faster
than splda and flda respectively. sgs alias(1.0, 0) is twice faster than alias for
most parameter settings. sgs splda(1.0, 0.3) and sgs flda(1.0, 0.3) are about
2 ∼ 3 times faster than splda and flda respectively. sgs alias(1.0, 0.3) is about
2 ∼ 5 times faster than alias in different parameter settings. An impressive ex-
ample is that, cgs takes 5 hours to run one iteration on PubMed with Z = 5000;
with the same setting, sgs cgs(1.0, 0.3) takes only 0.5 hours.
Summary: After demonstrating how subsampling ratios affect the effective-
ness and efficiency, we would like to mention that, in real applications, it is a
tradeoff to choose proper subsampling ratios q and r to have expected speedup
and acceptable effectiveness. Since the subsampling ratio q does not affect ef-
fectiveness too much as shown in Fig. 11, we suggest to choose q = 1.0 to have
a maximum speedup with little sacrifice on effectiveness. Since large subsam-
pling ratio r results in unacceptable effectiveness, we recommend to choose a
relatively small r value depending on the data set size.
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Figure 15: Comparison of speedup of sgs GS methods v.s. subsampling ratio
q (Z = 1000)

5 Related Work

We already review single-thread fast Gibbs sampling algorithm in Section 1.
In this section we review parallel and distributed Gibbs sampling algorithms.
Real world text corpora are massive, which brings challenges to the scalability
of topic model inference. Newman et al. [17] introduce AD-LDA algorithm,
which is the first attempt to distribute the Gibbs sampling algorithm to infer
topic models. AD-LDA partitions the documents into disjoint groups and assign
partitions to different processors on which Gibbs sampling is performed. Ihler
et al. [11] improve [17] by designing a better partition strategies which impose
a constraint that different groups do not share words. [11] also proves the
error bound of the distributed Gibbs sampling algorithm. Smola et al. [16]
have designed Yahoo LDA which builds a fault tolerant and scalable inference
system for topic models. Yuan et al. [7] propose LightLDA that first observes the
access patterns of the parameters of topic models. By caching frequent accessed
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Z = Z = Z = Z = Z = Z = Z = Z =
Algorithms 2000 5000 8000 10000 2000 5000 8000 10000

NIPS Enron
sgs cgs(1.0, 0) 2.61 3.00 2.67 2.54 1.71 1.62 1.72 1.74

sgs cgs(1.0, 0.3) 4.89 4.68 4.74 4.10 3.63 3.92 3.89 3.93
splda 23.56 33.90 40.66 48.57 14.75 14.76 17.03 19.46

sgs splda(1.0, 0) 50.87 67.66 74.34 84.45 20.66 20.68 23.13 25.68
sgs splda(1.0, 0.3) 84.50 143.44 124.05 134.91 42.13 47.84 53.72 60.24

alias 5.55 12.37 17.93 29.82 6.24 11.53 20.75 24.63
sgs alias(1.0, 0) 19.03 41.00 60.69 74.82 12.73 26.73 41.91 48.44

sgs alias(1.0, 0.3) 30.30 64.19 98.53 117.34 27.38 54.86 79.90 106.21
flda 33.36 52.77 67.02 82.82 18.17 30.66 33.39 34.00

sgs flda(1.0, 0) 76.58 149.99 204.64 286.78 33.19 35.65 46.62 56.84
sgs flda(1.0, 0.3) 141.40 244.71 325.33 423.65 71.44 98.90 104.25 134.32

Z = Z = Z = Z = Z = Z = Z = Z =
Algorithms 2000 5000 8000 10000 2000 5000 8000 10000

NYTimes PubMed
sgs cgs(1.0, 0) 1.43 1.43 1.42 1.44 1.52 1.54 1.57

sgs cgs(1.0, 0.3) 4.23 4.22 4.23 4.27 14.74 15.10 13.74
splda 5.02 7.35 8.94 8.47 3.95 3.08 3.49

sgs splda(1.0, 0) 8.02 9.47 10.15 12.53 5.28 4.23 5.50
sgs splda(1.0, 0.3) 16.41 19.53 28.68 29.27 11.00 12.48 13.90

alias 4.34 10.21 13.62 18.86 4.68 7.96 13.41
sgs alias(1.0, 0) 7.06 14.24 20.88 32.13 8.27 11.45 23.80

sgs alias(1.0, 0.3) 17.15 50.77 75.22 113.48 29.63 46.91 93.02
flda 7.37 8.31 8.98 10.29 5.41 3.73 4.63

sgs flda(1.0, 0) 8.51 11.51 13.31 14.95 7.67 5.92 7.79
sgs flda(1.0, 0.3) 18.07 29.83 36.48 29.91 17.48 15.67 19.43

Table 5: Speedup of sgs GS over cgs varying Z

data and adopting parameter server framework [18], LightLDA improves the
efficiency and scalability of topic models. Yu et al. [6] propose F+Nomad LDA
which carefully partitions data into disjoint groups and designs an asynchronous
framework to process the disjoint groups in parallel. Chen et al. [19] propose
WarpLDA, which is a cache efficient O(1) algorithm, for LDA by designing
Monte-Carlo Expectation Maximization (MCEM) inference algorithm.

6 Conclusions and Future Work

In this paper, we propose a novel and general strategy Sub-Gibbs Sampling
(SGS), to improve the efficiency of any Gibbs sampling algorithms for LDA. The
SGS strategy utilizes two properties that we observed in text corpora, the tokens
in a document have skewed topic distributions and the semantics of a corpus
can be approximately covered by a subset of documents in this corpus. We
theoretically prove that the error of SGS algorithm is bounded by a small upper
bound. We implemented the SGS strategy on the traditional Collapsed Gibbs
Sampling (CGS) algorithm and three state-of-the-art Gibbs sampling algorithms
(FastLDA, AliasLDA, and F+Nomad LDA). The experimental results on four
real data sets showed that the SGS algorithms can learn similar models as those
of other Gibbs sampling algorithms with much better efficiency. In particular
the proposed strategy is 2 ∼ 100 times faster than CGS and 2∼5 times faster
than FastLDA, AliasLDA, and F+Nomad LDA algorithms. In the future we
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Figure 16: Comparison of speedup of sgs GS methods v.s. subsampling ratio
r (Z = 1000)

will explore better group partition algorithms and find a close form error bound
for the SGS strategy.
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