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Abstract—Skyline queries are used to find the Pareto optimal
solution from datasets containing multi-dimensional data points.
In this paper, we propose a new type of skyline queries whose
evaluation is constrained by a multi-cost transportation network
(MCTN) and whose answers are off the network. This type of
skyline queries is useful in many applications. For example, a
person wants to find an apartment by considering not only the
price and the surrounding area of the apartment, but also the
transportation cost, time, and distance between the apartment
and his/her work place. Most existing works that evaluate skyline
queries on multi-cost networks (MCNs), which are either MCTNs
or road networks, find interesting objects that locate on edges
of the networks. Formally, our new type of skyline queries takes
as input an MCTN, a query point q, and a set of objects of
interest D with spatial information, where q and the objects
in D are off the network. The answers to such queries are
objects in D that are not dominated by other D objects when
considering the multiple attributes of these objects and the
multiple network cost from q to the solution objects. To evaluate
such queries, we propose an exact search algorithm and its
improved version by implementing several properties. The space
of the exact skyline solutions is huge and can easily reach the
order of thousands and incur long evaluation time. We further
design much more efficient heuristic methods to find approximate
solutions. We run extensive experiments using both real and
synthetic datasets to test the effectiveness and efficiency of our
proposed approaches. The results show that the exact search
algorithm can be dramatically improved by utilizing several
properties. The heuristic approaches to find approximate answers
can largely reduce the query time and retrieve results that are
comparable to the exact solutions.

I. INTRODUCTION

Skyline queries are important in finding Pareto optimal so-
lutions in multi-dimensional data. Conducting skyline queries
on multi-cost networks (MCNs) has been studied [15], [17],
[21], [26] in recent years. Examples of MCNs include road
networks and multi-cost transportation networks (MCTNs). In
an MCN, the cost of an edge is multi-dimensional in nature.
For example, the cost of a road segment can represent the
walking distance, driving time, and gasoline consumption.
As far as we know, in existing works on evaluating skyline
queries, the query points and the query results need to be
simultaneously present on the edges of the given network.

We study the skyline query problem in a different real-
world setting where the query points and/or the query results
are off an MCTN while finding the solutions to the skyline

queries need to utilize an MCTN. We denote such type of
skyline queries as MCTN-constrained skyline queries. We
now describe some of the real-world applications of MCTN-
constrained skyline queries:
• Application example 1. Alice working at company X, which
is the query point, wants to find an apartment, which is a
query result (target object), with reasonable price and in a
safe area. The apartment should be within reasonable distance
from Alice’s work place so that the commute time and the
cost of using public transportation is acceptable. The desired
apartment is one skyline solution by considering four factors:
apartment price, safety of the apartment area, transportation
time, and transportation cost. To find such apartments, we
need to consider the travel distance and the cost of using the
available public transportation network.
• Application example 2. Alice attending a conference, where
the conference venue is a query point, wants to find a hotel
(a query result) with good price and good service because
the conference hotel is too expensive. Also, this hotel should
not be too far away from the conference venue and the travel
time between them should be reasonable. The hotel that meets
Alice’s requirements is a skyline solution of this conference
venue (the query point) after taking into consideration the
following factors: hotel price, hotel service, transportation
time, and transportation cost. To find such hotels, we need
to consider the travel distance and the cost of using the public
transportation network or using road networks.
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Fig. 1. Example of MCTN-constrained skyline queries & answers

When MCTNs are utilized to constrain skyline queries, there
are several major challenges due to our problem letting: (i) the
solution target object o (e.g., the apartment/hotel that Alice



finally decides to rent/book) are not known when the query is
issued, and (ii) both the query point q and the target object o
do not locate on the MCTN. One solution to a target object
is a path containing three segments as shown by the three
blue dash lines or the three purple dotted lines in Figure 1.
The first segment is from q to a starting graph node vs, the
second segment is a graph path from vs to an ending graph
node vt, and the third segment is from vt to the target object
o. When the query is issued, the starting graph node vs, the
ending graph node vt, and the destination o are all unknown.
The algorithm needs to find them in the search process. Once
the graph nodes vs and vt are known, it is trivial to find the
first and the last segments. The challenges lie in (i) finding
the proper vs and vt and (ii) finding the graph paths from vs
to vt that are not dominated by any other path between these
two nodes. Every node in this MCTN can be vs or vt, thus a
naive method needs to search paths between N×(N−1) node
pairs, where N is the number of nodes in the MCTN. This
calculation is prohibitively expensive.

Many skyline query processing techniques have been pro-
posed (e.g., [2], [18], [19], [24]). However, these works do not
take into consideration MCTNs for evaluating our proposed
new queries. The work that is closest to our problem setting is
[15], which presents an approach to find skyline paths between
a given pair of source and destination graph nodes on an
MCTN. The problem studied in [15] is much easier than our
problem because both the source and destination graph nodes
are known, while in our problem the starting and ending graph
nodes (vs and vt in the above description) are all unknown
since the query point q and the target object o are not on the
MCTN. We discuss in more depth the differences between our
work and [15] in Section II and propose a method that utilizes
several heuristic rules in [15] in Section VI-B.

To evaluate the MCTN-constrained skyline queries and
address the above mentioned challenges, we propose a baseline
approach and several heuristics to improve upon the baseline.
The contributions of this paper are as follows.
• We propose a new type of skyline queries whose answers

are constrained by an MCTN. In particular, we consider
the situation that the MCTN is stored in disk. This
is different from most works that consider holding the
graphs in memory (e.g., [8]).

• We propose a Best First Search (BFS) based baseline
approach to evaluate such queries and find exact answers.

• We improve upon the baseline approach by utilizing
several geometric-based properties that we observe.

• We improve the BFS-based exact search algorithm by uti-
lizing heuristic rules to find approximate solutions. These
heuristic methods further improve the query efficiency
and are able to find answers that are comparable to the
exact skyline solutions.

• We conduct extensive experiments using real and syn-
thetic datasets. The results show that our improved
methods can reduce the search space significantly and
outperform the baseline.

The paper is organized as follows. In Section II, we discuss

works that are related to our research problem. Section III for-
mally defines the proposed problem. Sections IV and V present
our proposed approaches. Section VI shows our experimental
results. Finally, Section VII concludes our work.

II. RELATED WORK

A. Skyline problem

The skyline problem is first proposed in [3], which in-
troduces a Block Nested Loop (BNL) method and a Divide-
and-Conquer approach. In general, there are two directions to
solve the original skyline problem. The first direction is to
design special index structures (e.g., variants of R-tree [9] or
R+-tree [20]) to accelerate query processing [18], [19]. The
second direction is to pre-sort the source data to improve the
efficiency of data scan [2], [6].

The original skyline problem has been extended to various
applications. The k-dominant skylines are proposed in [4],
which generalizes the dominance relationship by requiring
that a point needs to be better than other points in at least
k attributes. The dynamic skyline problem is introduced in
[19], in which the dominance relationship between two points
is defined based on an ad-hoc query point q.

Other works focus on proposing new methods to reduce
the size of the skyline result set. In [16], [23], only k-
representative results are returned. In [24], the authors define
the score of a data point o by considering the total number
of points it dominates and the distance between o and these
dominated points. All these works do not involve any graph
structured data, which we use.

B. Shortest path problem

The evaluation of MCTN-constrained skyline queries is
highly related to path finding. Shortest path finding problem
is one of the fundamental problems in the field of graph
processing. The traditional Dijkstra [7] algorithm and the A∗

algorithm [10] (and their subsequent extensions) are most
widely used to find shortest paths in a graph. However, these
traditional algorithms are not efficient in finding shortest paths
from large graphs on the fly. To make online processing of big
graphs faster, new index structures are proposed [1], [5], [11],
[27]. These index structures cannot be directly utilized to solve
our proposed problem because the size of these structures
increases dramatically for the skyline setting (as apposed to
shortest path finding).

C. Skyline queries on road networks

Given the fundamental importance of skyline queries, such
queries have been proposed on road networks. As far as we
know, the first work that considers skyline queries using road
networks is [13], in which the in-route skyline problem is
defined. This problem finds points of interest (POIs) on the
edges of the network by considering multiple cost that are
calculated using the location of a query (which is on one graph
edge), a pre-defined route, and this route’s destination.

A more often studied problem is the skyline path problem,
which is introduced in [15]. In this problem, given a starting



node vs and a destination node vt in a multi-cost road network,
a network path p from vs to vt dominates another path p′ if
and only if the cost on each dimension of p is better than that
of p′. The search space of skyline paths is huge. To reduce the
search space, Kriegel et al. [15] utilize the landmark index [14]
to estimate the lower bound of the cost from any graph node
vi to the destination node vt. The method in [15] also uses
several heuristics: (h1) If a path p is dominated by one of
the skyline paths found so far, p can be discarded. (h2) If
the estimated cost of p is dominated by one of the skyline
paths found so far, p can be discarded. (h3) A prefix sub-
path p of a final skyline path must be a skyline path from
vs to p’s ending node. Our work is very different from [15].
As analyzed in Section I, the target object in our problem
setting is unknown and the query point is not on the graph.
Because of these, the possible starting graph node vs and
the ending graph node vt are unknown. A naive approach
needs to compute skyline paths between N2 node pairs (for
possible vs and vt). The method in [15] only helps improve the
search efficiency for one pair of nodes. Despite the intrinsic
differences between our work and [15], we design an A*-based
approach by utilizing several heuristics presented in [15] to
compare with our proposed methods in Section VI.

Following the initial skyline-path definition in [15], Yang et
al. in [26] define the stochastically dominance relationship and
use the reverse Dijkstra [7] search to estimate the lower-bound
of the cost on each dimension from a network node vi to the
destination node vt. We utilize skyline paths, but we work on
a more challenging problem where the starting graph node vs
and the destination graph node vt are unknown.

More recent related works focus on finding skylines when
using moving objects in road networks as query points. Fu et
al. in [8] find continuous skyline POIs for an object moving
on a road network whose cost is one dimension. Xu et
al. [25] further attempt to improve upon the above problem
by considering complex relations between a moving object’s
state and the given query. None of the above works try to solve
skyline queries whose answers are constrained by an MCTN.

III. PROBLEM DEFINITION

This section formalizes our proposed skyline queries and
related terminologies.

A multi-cost transportation network (MCTN) is represented
as a weighted direct graph G=(V,E,W ) where V (denoted
as G.V ) is the set of nodes and each node contains spatial
information, E⊂V ×V (denoted as G.E) is the set of edges,
and W ∈ RdG is a set of dG-dimensional positive weight
vectors. Let N be the number of graph nodes, and wi be
the cost of the i-th dimension of an edge. In an MCTN, the
nodes can represent bus stops or metro stations and the edges
represent the segments of bus/metro lines.

Let D be a set of objects that are of users’ interest,
such as hotels, restaurants, and apartments. Each object
o ∈ D has spatial attributes and dD non-spatial attributes
o.attr[1],· · ·, o.attr[dD] that users are interested in (e.g., price,
ranking of a hotel). The spatial attributes are used for distance

calculation. An object in D may locate on the network or be
off the network. We focus on the case that the objects in D
are off the network because the case that D objects are on G
is an easier special case.
Running example. This section uses the MCTN shown in Fig-
ure 1 as a running example to explain the different concepts.
We assume that the MCTN edges have two cost attributes,
travel time and travel expense, and D contains hotel objects,
which have two non-spatial attributes, price and ranking.

A. Graph paths and graph-constrained paths

Definition 1 (A graph path in G). Given a start node vs∈G.V
and a destination node vt ∈G.V , a graph path pG(vs, vt) is
a sequence of nodes (vs, · · · , vi, vj , · · · , vt) where vi ∈ G.V ,
(vi, vj)∈G.E, and no node appears twice in a path.

The cost of a graph path is the summation of the cost of all
the edges of pG.

Example 1. Given the MCTN in Figure 1, one graph path is
pG(v1, v11)=(v1, v7, v12, v11), and its cost is the summation
of the cost of edges (v1, v7), (v7, v12), and (v12, v11).

Definition 2 (A graph-constrained path). Given a start point
os ∈ D ∪ G.V , a target point ot ∈ D ∪ G.V \ os, and an
MCTN G, a G-constrained path from os to ot is pc(os, ot) =
(os, pG(vs, vt), ot), where pG(vs, vt) is a graph path from vs
to vt in G.

A graph-constrained path is called constrained path when
there is no confusion in the context. When os and ot are graph
nodes, the constrained path pc(os, ot) is the same as the graph
path pG(vs, vt) where vs= os and vt= ot. Constrained paths
are used to describe queries in real world.

Example 2. A person may want to find a path from a hotel
os to a restaurant ot by taking buses. A path pc(os, ot) = (os,
pG(vs, vt), ot) may indicate that this person walks from os to
the bus stop vs, takes a bus from vs to another bus stop vt,
and walks from the bus stop vt to the restaurant ot.

In the setting of utilizing transportation networks, the cost
of a constrained path is multi-dimensional. The dimension of
the cost of one constrained path is dG+1. Formally, the cost
of a constrained path is defined as

cost(pc(os, ot))=(dist(os, vs)+dist(vt, ot), cost(pG(vs, vt))).

The function dist(oi, oj) represents the distance (e.g., by
walking or driving) from oi to oj where oi and oj are from D.
It can take different distance measurements, such as Manhattan
distance or Euclidean distance.

Definition 3 (Dummy Path). Given a start point os ∈ D ∪
G.V , a target point ot ∈ D ∪G.V \ os, and an MCTN G, a
dummy path from os to ot is a special case of a constrained
path pc(os, ot) = (os, pG(vs, vt), ot) where pG(vs, vt) = ∅.

The cost of a dummy path is

cost(pc(os, ot)) = (dist(os, ot), 0, · · · , 0︸ ︷︷ ︸
dG

) (1)



Example 3. In Figure 1, let q be the given query and
o2 be an object of interest. The path (q, v1, v2, v3, o2) is
a graph-constrained path pc(q, o2). The cost of pc(q, o2) is
(dist(q, v1)+dist(v3, o2), cost(pG(v1, v3)). The special case
of pc(q, o2) is when a user walks from q to o2 directly.

The starting and ending nodes of a graph path or a graph-
constrained path p is denoted as p.start and p.end respec-
tively. Given pG(vs, vt), pG.start=vs and pG.end=vt. Given
pc(os, ot), pc.start=os and pc.end=ot. The length of a path
is the number of nodes in the path sequence minus one.

B. Dominance relationship, skyline paths, and path con-
strained objects

Since the cost of a path (either graph path or constrained
path) is multi-dimensional, it is possible that the cost of two
paths are incomparable to each other. To compare the cost of
paths, we define their dominance relationship as follows:

Definition 4 (Dominance relationship). Given two general
elements e and e′ with multi-dimensional cost cost(e) and
cost(e′) respectively, e dominates e′ (denoted as e � e′)
if and only if ∀dimension i, cost(e)[i] ≤ cost(e′)[i] and
∃ dimension i, cost(e)[i] < cost(e′)[i].

The dominance relationship is transitive. I.e., if e1 � e2 and
e2 � e3, then e1 � e3.

The dominance relationship can be applied to two paths p
and p′ (to replace the general elements e and e′) to define that
a path p dominates p′ (denoted as p�p′).

Given the dominance relationships defined on paths, the
skyline paths from vs to vt are defined as below.

Definition 5 (Skyline paths). Given an MCTN G, a starting
object os ∈ D ∪G.V , and a target object ot ∈ D ∪G.V , the
skyline paths from os to ot form a set of constrained paths
SP satisfying (1) ∀p′ /∈ SP , ∃p ∈ SP s.t. p � p′, and (2)
∀p ∈ SP, @p′ ∈ SP s.t. p′ � p.

Definition 6 (A path constrained object). Given an object
o ∈ D ∪ G.V and a graph-constrained path pc(os, o),
their corresponding constrained object, denoted as opc , has
dD + dG + 1 attributes

(o.attr[1],· · ·, o.attr[dD], cost(pc(os, o)). (2)

Let us denote the attributes of opc as opc .attr, and dc represent
the number of attributes for a path constrained object.

A given object o can have multiple corresponding con-
strained objects {op}, which are constrained by different paths.
Even when several paths that constrain o have the same starting
point os, the constrained objects for o can still be multiple
because there can be multiple different paths from os to o.

Example 4. Given the MCTN in Figure 1 and let q be the
given query. For o2, corresponding to two constrained paths
pc1(q, o2)=(q, v1, v2, v3, o2) and pc2(q, o2)=(q, v1, v7, v3, o2),
we can get two path constrained objects, opc12 and opc22 . These
constrained objects have five attributes: (i) hotel price and

hotel ranking from o2’s attributes, (ii) the walking distance for
two segments (q, v1) and (v3, o2), and the (iii) network cost
including network travel time and network travel expense.

Given a constrained object opc , we call o its base ob-
ject and pc its constraining path. We can represent this as
BaseObject(opc) = o and ConstrainingPath(opc) = pc.

Skyline solutions are path constrained objects. We can apply
the dominance relationship (Def. 4) to two constrained objects
opi and op

′

j (replacing e and e′) to define opi dominating op
′

j ,
denoted as opi � op

′

j , by treating cost(opi ) = opi .attr and
cost(op

′

j ) = op
′

j .attr.

C. Constrained skyline queries

Definition 7 (MCTN-constrained skyline query). Given an
MCTN G, a set of objects of interest D, and a query point
q, an MCTN-constrained skyline query returns a set R of
constrained objects {opc} and their corresponding constrain-
ing paths {pc(q, o)} such that (i) ∀o′p′ /∈ R, ∃opc ∈ R s.t.
opc � o′p′ , and (ii) ∀opc ∈ R, @o′p′ ∈ R s.t. o′p

′ � opc .

Note that skyline queries are defined in a similar way as
skyline paths (Def. 5).

IV. EVALUATE MCTN-CONSTRAINED SKYLINE QUERIES

This section presents our baseline approach and its improved
version to find the exact answers for our newly defined MCTN-
constrained skyline queries.

A. ExactAlg-baseline: Baseline method to find exact answers

Several naive approaches can be used to find exact answers.
One naive method can directly find skyline paths between
every pair of graph nodes (as discussed in Section I). Another
method is to introduce a dummy source node (the query point)
and a dummy destination node (one object of interest), and
find skyline paths between the dummy source and destination
nodes. To avoid missing any solution, both the dummy source
and destination nodes need to connect to all the nodes on the
MCTN. The methods based on the above ideas incur expensive
computations because there are N×(N−1) graph-node pairs
and the number of skyline paths from one graph node to
another graph node is exponential to the length of paths.

Due to the expensive computations of the naive approaches,
we think of utilizing heuristics to solve the problem. One
approach is to design an A*-based algorithm as in [15] by
estimating lower-bound cost in the search process. For our
problem, because the target object of interest is unknown, an
A*-based method needs to consider every object in D as a
possible target object. Even with a fixed target object, we still
need to consider every MCTN node as a starting graph node
and an ending graph node in the skyline path. This method
also needs to find paths between N × (N − 1) node pairs
and the overall computation requires us to apply the method
in [15] |D|×N × (N −1) times to get the exact solutions.
This method shares the similar complexity as the naive method
although it can benefit from the heuristics in [15] to reduce the
search space when the starting/ending graph nodes are fixed.



Considering the expensive computation of finding the exact
solutions, we design a method (Section VI-B) to reduce the
factors of N×(N−1) to find approximate solutions.

After analyzing the nature of our problem and the different
possible naive approaches, we take a Best First Search (BFS)-
based strategy to solve this problem because BFS only needs
to explore the research space when necessary. We propose a
BFS-based baseline method (ExactAlg-baseline, Algorithm 1)
to evaluate an MCTN-constrained skyline query. This method
utilizes a property of skyline paths. Before describing this
property, we first introduce the concept of path prefix.

Definition 8 (Constrained prefix path). Given a constrained
path pc(os, ot)= (os, pG(vs, vt), ot) where os∈D, ot∈D, its
constrained prefix path is (os, pG(vs, vt)), which is denoted
as pc(os, vt).

A constrained prefix path is also called prefix path when no
confusion is caused in the context. The cost cost(pc(os, vt))
is (dist(os, vs), cost(pG(vs, vt))).

Example 5. In the scenario of taking buses, a constrained
prefix path means that a user knows the starting bus stop, the
ending bus stop, and the bus line that he/she can take from the
starting bus stop to the ending bus stop. However, this user
does not know which target object he/she can reach from the
ending bus stop.

Property 1 (Property of skyline paths). Given an MCTN G, a
query q, and a constrained path pc(q, ot)=(q, pG(vs, vt), ot),
if pc(q, ot) is a skyline path from q to ot, then its prefix path
pc(q, vt) = (q, pG(vs, vt)) must be a constrained skyline path
from q to vt.

Proof. This property can be proved by contradiction.
Assume that the constrained prefix path pc(q, vt) =
(q, pG(vs, vt)) is not a skyline path from q to vt. Then,
there must exist another prefix path p′c(q, vt) that dom-
inates pc(q, vt). Concatenating p′c(q, vt) with the seg-
ment (vt, ot), we get a constrained path p′c(q, ot) =
(p′c(q, vt), ot). Then, p′c(q, ot) must dominate pc(q, ot) because
(i) p′c(q, ot) = (p′c(q, vt), ot), (ii) pc(q, ot) = (pc(q, vt), ot),
and (iii)p′c(q, vt) � pc(q, vt). Then, pc should not be a skyline
path from q to ot. This contradicts the given condition.
This property generalizes the heuristic rule (h3) in [15].

This property is utilized in Algorithm 1, which shows the
framework of our proposed baseline exact search algorithm.
This framework utilizes a priority queue to keep the graph
nodes that have been processed and have the potential to be
in a skyline path from q to a base object of a skyline solution.
An element in the priority queue is a graph node. For each such
graph node v, we keep its spatial information, a flag visited
to denote whether the node has been visited, and a structure
skypaths to keep all the skyline paths from q to this node.
The spatial information of the node v is used to calculate the
distance from the query point q to v. This distance is used to
rank the elements in the priority queue. The distance is utilized
here because we can use it to conduct several improvements

Algorithm 1: Method ExactAlg-baseline
Input : an MCTN G, a query point q, the set of objects of interest D
Output: The set of skyline solutions R

1 begin
2 Initialize a priority min-queue Q to be empty;
3 Initialize the result set R = ∅;
4 // Step 1: Graph traversal
5 vnearest= the nearest graph node to q;
6 Q.enqueue(vnearest);
7 while Q is not empty do
8 v = Q.pop() ;
9 if v is not visited before then

10 Create a dummy path dp;
11 v.visited = true;
12 addToSkyline(dp, v.skypaths) ;
13 foreach path p ∈ v.skypaths do
14 if p.expanded = fasle then
15 foreach vnext ∈ neighbors(v) of G.V do
16 pnext = path(p, vnext);
17 if pnext is a new skyline path from q to vnext then

// Property 1
18 vnext.Skypaths.add(pnext);
19 Q.enqueu(vnext) ;
20 // Step 2: Create path constrained objects and put

them to result set
21 Initialize the candidate result set Dcand to contain the objects in D that

are not dominated by q ;
22 foreach v is visited do
23 foreach pc ∈ v.skypaths do
24 foreach o ∈ Dcand do
25 Create opc with attributes updated using o’s attributes,

cost(pc), and dist(pc.end, o);
26 addToSkyline(opc ,R) ;
27 return R;

using Lemmas 2-4. For each path in v’s skyline path set, we
keep its current cost and an expanded flag to denote whether
this path has been expanded in the traversal process. Every
newly created path has the flag expanded set to be false.

The ExactAlg-baseline method runs in two steps, graph
traversal and creating result set. In graph traversal, it first finds
the graph node nearest to q and puts it to the priority queue
(Lines 5-6). Then, it pops out the next best node v from the
priority queue (Line 8) and expands its skyline paths. If the
node v has not been visited before, this algorithm creates a
dummy path dp (Line 10). The cost of the first dimension of
dp is set to be the distance from q to v and the cost in all the
other dimensions is set to be zero.

The second step of the algorithm (Lines 21-25) creates all
the constrained objects that can be skyline solutions. Such
objects are denoted as skyline candidates. In particular, it
first finds the objects of interest that are not dominated by
q (Line 21). These objects are possible skyline candidates.
This step utilizes the R-tree structure [19] to index all the
objects in D. Then, for every visited node v, each of its
skyline path pc(q, v) can be combined with a base object
o ∈ Dcand to form a skyline candidate opc . opc consists of
dD attributes from o and 1 + dG attributes from the cost
of pc (Line 25). In particular, opc .attr[i] = o.attr[i] for
1 ≤ i ≤ dD, opc .attr[dD+1] = cost(pc)[1]+dist(pc.end, o),
and opc .attr[i] = cost(pc)[i−dD] for dD+2 ≤ i ≤ dD+dG+1.
Let the average number of skyline paths for each visited node
be |SP |, Lines 22-25 have complexity O(|G.Vvisited|×|SP |×
|Dcand|).

A very important step in the algorithm is to add a candidate



Function 2: Function addToSkyline
Input : a new object objnew (which can be a path or a constrained object), a

set of skyline objects Sskyline

Output: Updated Sskyline

1 begin
2 if Sskyline is ∅ then
3 Sskyline.insert(objnew);
4 else
5 can insert = true;
6 i = 0;
7 while the i-th object in Sskyline (obj) is not null do
8 if checkDominance(obj, objnew) then
9 can insert = false;

10 break;
11 if checkDominance(objnew, obj) then
12 Sskyline.remove(obj);
13 continue;
14 i++;
15 if can insert is true then
16 Sskyline.insert(objnew);
17 return Sskyline;

constrained object to the result set R, which may be huge. The
details of this step are presented in Function 2 (addToSkyline).

The function addToSkyline checks whether it can add a new
object objnew (which can be a path or a constrained object)
to the skyline object set Sskyline. This algorithm utilizes the
following Property 2.

Property 2. Given a new object objnew, if objnew dominates
an object obj ∈ Sskyline, then objnew must be a skyline object
and needs to be added to the result set Sskyline.

Proof: We prove this by contradiction. Assume that objnew
is not a skyline object. There must ∃obj′ ∈ Sskyline such that
obj′ dominates objnew. Since objnew dominates obj (given),
then obj′ dominates obj. This means that obj cannot be in
Sskyline. However, the given fact is that both obj and obj′ are
in Sskyline. Thus, the assumption that objnew is not a skyline
object is not correct.

Utilizing this property, the function addToSkyline works as
follows. If the result set Sskyline is empty, the new object
objnew is directly added to Sskyline (Line 2). If the set Sskyline
is not empty, the algorithm checks the dominance relationship
of the new object objnew and existing object obj in Sskyline.
In this step, we keep a flag can insert, with initial value
true, to denote whether the new object objnew is dominated
by any existing object. If it is dominated by one object,
then it should not be inserted to Sskyline and the value of
can insert is set to false (Line 8). If an existing object obj
is dominated by objnew, the algorithm removes obj from the
set Sskyline. After we scan every object obj ∈ Sskyline, if
the flag can insert is true, we insert the objnew into the set
Sskyline (Line 16). The major computation of this function
is the checking of the dominance relationship between the
new object objnew and each object obj ∈ Sskyline. The
function checkDominance(obji, objj) is used to check whether
the object obji dominates another object objj .

B. ExactAlg-improved: Improved exact search algorithm

Two major expensive computation steps in Method
ExactAlg-baseline are traversing the graph (Lines 7-19) and

constructing constrained objects from the large Dcand to
update the result set R (Lines 22-26). In this section, we
propose several lemmas that can help us improve the baseline
search method by reducing the queue size and the space of
Dcand. Let us denote the method that utilizes these several
lemmas as ExactAlg-improved.

1) Improvement to reduce queue size:

Lemma 1. Let q be one query point and o be an object in D.
The dummy path pc(q, o) must be a skyline path from q to o.

Proof. Given that the cost of the dummy path pc, cost(pc) =
(dist(q, o), 0, · · · , 0) (Eq. (1)), has dG 0s, and no other graph
paths have cost less than 0 in different dimensions. pc must
be a skyline path from q to o according to the definition of
the skyline path (Def. 5).

Utilizing this lemma, we can directly add a new dummy path
to the set of skyline paths of one graph node. This Lemma is
implemented in Line 12 of the baseline method (Algorithm 1).

Lemma 2. Given a query q and two graph nodes vi and vj ,
if dist(q, vj) > dist(q, vi), then the prefix path pc(q, vi) =
(q, pG(vj , vi)) cannot be a skyline path from q to vi.

Proof. Let us compare pc(q, vi) = (q, pG(vj , vi))
and the dummy path dp(q, vi). The cost of pc(q, vi)
is (dist(q, vj), cost(pG(vj , vi)). The cost of dp(q, vi) is
(dist(q, vi), 0, · · · , 0) (Eq. (1)). Because dist(q, vj) >
dist(q, vi) and each dimension of cost(pG(vj , vi)) is bigger
than 0, dp(q, vi) � pc(q, vi). Then, pc(q, vi) is not a skyline
path from q to oi according to the definition.

This lemma can be implemented before Line 17 in the base-
line method (Algorithm 1). A condition can be added to check
the relationship between dist(q, p.start) and dist(q, vnext). If
dist(q, p.start) > dist(q, vnext), the new path pnext is not a
skyline path from q to vnext based on this lemma. Thus, we
do not need to put it to the priority query.

2) Improvement to reduce skyline candidates: In the base-
line algorithm, every object o ∈ Dcand is utilized to form
skyline candidates by using the constrained path pc(q, o) =
(pc(q, v), o) (Lines 24-26). We propose strategies to improve
this step by eliminating the construction of skyline candidates
for some objects in Dcand.

The new strategies utilize two lemmas. Let q be a query
and let pc = (q, pG(vs, vt), o) be a constrained path where
pG(vs, vt) is not empty. We present two lemmas as follows.

Lemma 3. Given q and pc, if pc is a skyline path from q to
o, then cost(pc)[1] = (dist(q, vs) + dist(vt, o))<dist(q, o).

Proof. Let us compare pc and the dummy path dp(q, o). The
cost of pc is (dist(q, vs) + dist(vt, o), cost(pG(vs, vt))). The
cost of the dummy path dp(q, o) is (dist(q, o), 0, · · · , 0). Since
pG(vs, vt) is not empty, each dimension of cost(pG(vs, vt)) is
bigger than 0. In order for both pc and dp to be skyline paths,
the first dimension of pc must be smaller than that of dp. I.e.,
dist(q, vs) + dist(vt, o) < dist(q, o)



Lemma 4. Given q and pc, if pc is a skyline path from q to
o and dist(vt, o) ≥ min{dist(vt, ox)|ox � o}, opc is not a
skyline solution.

Proof. Let p′c(q, ox) = (q, pG(vs, vt), ox) be a graph-
constrained path from q to ox where ox � o. According to
Eq. (2), the cost of op

′
c
x is

(ox.attr[1],· · ·,ox.attr[dD], dist(q, vs)+dist(vt, ox), cost(pG(vs, vt)).

We know that the cost of opc is

(o.attr[1],· · ·, o.attr[dD], dist(q, vs) + dist(vt, o), cost(pG(vs, vt)).

Let us compare the cost of opc and op
′
c
x . First, since ox � o, we

get o.attr[i] ≥ ox.attr[i] for 1 ≤ i ≤ dD and there must ∃i ∈
[1, dD] s.t. o.attr[i] > ox.attr[i]. Second, cost(pG(vs, vt)) is
the same for both constrained objects. Then, if dist(vt, o) ≥
dist(vt, ox), opc is dominated by op

′
c
x . Thus, opc can not be a

solution for the skyline query q.

Algorithm 3: Function addToSkylineImproved
Input : a query point q, a new path np, a set of skyline solutions R candidate

object set Dcand

Output: updated R
1 begin
2 vs = np.start; vt = np.end;
3 foreach o ∈ Dcand do
4 distmin = MIN{dist(vt, ox)|ox � o} ;
5 if ((dist(q, vs) + dist(vt, o) < dist(q, o))
6 & (dist(vt, o) < distmin) then ; // Lemmas 3& 4
7
8 Create opc with attributes updated using o’s attributes,

cost(np), and dist(np.end, o);
9 addToSkyline(opc ,R) (Function 2);

10 return R;

We create a new function addToSkylineImproved (Algo-
rithm 3) by utilizing Lemmas 3 and 4 to reduce the time
of updating skyline results. This function creates new skyline
candidate opc only when the distances from q to vs and from
vt to o meet the given conditions in both lemmas. These
two conditions limit the creation of candidate skylines. With
this function, ExactAlg-improved rewrites Lines 24-26 in the
baseline method to

addToSkylineImproved(q, pc, R,Dcand).

C. How much space to improve

We utilize different Lemmas to improve the exact search
algorithms in Sections IV-B1 and IV-B2. Do we still have
much space to improve the baseline algorithm? We propose a
measurement, called visiting ratio, to quantify this.

For a given query, the visiting ratio is defined as follows.

Visiting Ratio =
|{Nodes ∈ pc|opc ∈ R}|

|{Nodes in G that are visited}|
A higher ratio means that larger number of graph nodes that

are visited are also in the constrained paths of the final results.
Thus, less graph traversal effort is wasted.

We examine the visiting ratio by plotting the ratios for
different settings of |D|N in Figure 2. The figure shows that the
visiting ratio is very high. Even when the number of objects
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Fig. 2. Visiting ratio vs. |D|
N

is only 20% of the graph size N , the visiting ratio is more
than 40%, which means that more than 40% of the nodes that
are visited in the query process is a node in the constrained
path of a result. These results show that there is little space
to improve the exact search algorithm.

V. HEURISTIC APPROACHES TO FIND APPROXIMATE
SOLUTIONS

The space of exact skyline answers is huge. It can easily
reach thousands, thus incur very expensive calculation. This
section proposes strategies to reduce the unnecessarily huge
space of results based on two intuitions in real applications.

The first intuition comes from how users utilize search
results. Given a query, people tend to utilize the first tens of
answers [22]. The thousands of answers returned to users may
not really help much. The second intuition is related to how
much users care whether a solution is an exact solution or not.
In the applications of utilizing transportation networks, when a
non-skyline answer is close to a skyline answer (e.g., the travel
time differs from the exact travel time (which is thirty minutes)
by two minutes and all the other dimensions are the same), the
non-skyline answers are generally acceptable to users. Based
on the above intuitions, we propose two heuristic approaches
to find approximate solutions. These approximate solutions are
comparable to the exact solutions, while the heuristic methods
can dramatically reduce the result space.

A. Heuristic approach by using approximate range search

The first heuristic targets to reduce the number of starting
and ending nodes during graph traversal by using approximate
range search. We denote this method as Approx-range.
Observations: In real applications of utilizing transportation
networks, many bus/metro stops are far away from a query
point q. To get results for the query q, it is not reasonable to
use those faraway bus/metro stops as starting graph nodes to
traverse the graph. Also, if a bus/metro stop is far away from
the target object, people may not want to walk to such target
object from the bus/metro stop. A similar scenario is observed
by [12] which limits the distance from a query point to the
target result.

Making use of these observations, we try to find a reason-
able distance threshold that can be utilized to decide whether
a bus/metro stop is too far from a given query q or any target
object. If a graph node vs is too far from the query point, this



vs does not need to be a starting graph node during traversal.
Similarly, if a target object is too far from a graph node vt,
this object cannot be a result object constrained by any graph
path ending at vt.

We use the statistics of real datasets to find such threshold.
From the real data (see Section VI for detailed descriptions),
we run a random query and get the result setR of exact skyline
solutions. From R, we extract all the constrained paths. From
such paths, we get the set of distinct starting graph nodes
{vs} and distinct ending graph nodes {vt}. For each starting
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node vs, we calculate the distance from q to vs and plot the
distribution of such distance in Figure 3(a). For each ending
node vt, we calculate the distance from vt to its corresponding
paths’ constrained objects and plot the distance distribution in
Figure 3(b). The figures show that more than 80% of graph
starting nodes are within 1 Kilometer (Km) of the query point,
and more than 20% of objects of interest are within 1Km
of a graph ending node. The distance from the ending nodes
to constrained objects is larger than the distance from q to
the starting nodes of the graph paths. This is because {vt}
are more constrained: the objects constrained by graph paths
ending at vt are skyline answers considering both the distance
of graph paths and the non-spatial attributes of the objects.

Based on these statistics, we set a parameter τ to limit the
range search of starting and ending graph nodes. For a given
query q, we find the graph nodes that are within distance τ
from q and treat them as starting nodes to traverse the graph.
If τ is 1Km, then we can find 80% of the actual starting
graph nodes. Similarly, for each graph node v, which can be
a potential ending node of a graph path, we find objects in
D that are within distance τ from v. Such objects have the
potential to form a skyline answer.

B. Heuristic approach by using limited prefix paths

Another factor that impacts the performance of the exact
search algorithms is the number of skyline paths. As shown
in [15], when the length of a path increases, the number of
skyline paths between two nodes increases dramatically. When
a path is long, this number becomes prohibitively huge.

The large number of skyline paths incurs expensive cal-
culation in the exact search methods. Our second heuristic
approach targets to reduce the factor of |skypaths| of each
graph node. Our approach is inspired by the existing work [17]

which defines the skyline candidates by considering only the
shortest path on each dimension from the query point to each
target object. Utilizing a similar idea, this heuristic chooses the
skyline paths that have the minimum value on one dimension
to expand. This heuristic reduces the number of skyline paths
that need to be expanded for each node to dG.

P1 [ 2 , 20 ]

P2 [ 5 , 11 ]

P3 [ 5 , 14 ]

P4 [ 10 , 8 ]
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q

VS1
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Fig. 4. Four skyline paths from q to vi

Figure 4 shows a simple example of the path expansion
process for a node vi where the graph dG is two. p1, p2, p3,
and p4 represent the constrained prefix paths that need to be
expanded. The exact search algorithm needs to expand all the
four paths. This heuristic only needs to expand p1 and p4
because they have the minimum cost on dimension d1 and d2
respectively.

Issue caused by dummy paths. The heuristic approach
described above always chooses the dummy path to expand
because dummy paths only have one non-zero dimension
and have zero cost (minimum cost value) on all the other
dimensions. Thus, when we expand the skyline paths at each
node, the dummy path for this node is always chosen to be
expanded. This way, too much information is lost.

We propose to leverage range searches to this heuristic to
avoid the issue. When we use approximate range search, for a
graph node v that is too far away from q (beyond the threshold
τ ), we can avoid creating dummy paths from q to v. Then,
node v does not have a dummy path as a skyline path to be
expanded. We denote the heuristic that utilizes both the range
searches and the limited skyline-path expansion as Approx-
mix.

C. Indexed search algorithm

Lemma 4 shows that we can eliminate candidate objects by
utilizing only the attributes of objects in D and the distance
from graph nodes to these objects. Suppose that we have
two objects oi and oj , and oi � oj . For a graph node v,
if dist(v, oj) > dist(v, oi), then oj cannot form a skyline
candidate while oi has the possibility to form a candidate
solution. For each graph node v, we calculate a set of objects
that have the possibility to form candidate solutions. Let
Sv be a set with such objects. I.e., Sv = {oi|∃oj , (oi �
oj) ∧ (dist(v, oj) > dist(v, oi))}. The set Sv can be pre-
calculated and be used to calculate distance in Line 4 of
Function addToSkylineImproved.

To facilitate the fast calculation of distance. We create
an index structure to organize these sets of Sv . This index
structure is denoted as LSO to represent local skyline objects.
The index structure organizes the objects in three layers. The
first layer contains all the objects in D in disk. The second



Algorithm 4: Algorithm to construct the LSO index
Input : the set of objects D, an MCTN G
Output: the LSO index

1 begin
2 Initialize LSO to be empty;
3 S = findSkyline(D);
4 foreach v ∈ G.V do
5 Create Bv for node v as a block for the second layer of the index;
6 Add all the objects in S to Bv ;
7 foreach pair (o, s) where s ∈ S and o ∈ D \ S do
8 if ((s � o) ∧(dist(v, o) < dist(v, s)) ∧(dist(v, o) < τ) )

then
9 Bv .add(o);

10 Break;
11 LSO.add(v, Bv);
12 return LSO;

layer has N blocks where the i-th block Bi contains the
pointers pointing to the objects Svi in the first layer. The third
layer keeps N pointers, where the i-th pointer points to block
Bi in the second layer.

Utilizing the index, we can save calculations in two steps.
First, we do not need to calculate Dcand for each query.
Instead, we replace Dcand with Snp.end in Algorithm 3.
Second, the condition in Line 6 of Algorithm 3 does not need
to be checked because the way we build the index guarantees
that this condition is satisfied.

Algorithm 4 describes the process to construct the LSO
index. The algorithm creates the second layer of the index.
For each graph node v, it creates a block Bv with pointers
pointing to (i) all the skyline objects of D and (ii) base objects
for skyline candidates. The skyline objects in D by considering
only the non-spatial attributes of o ∈ D can be found using
the function findSkyline(D)(Line 3). Any state-of-the-art
skyline finding algorithm (e.g., [19]) can be applied here. The
base objects of skyline candidates are constrained using the
conditions in Line 8. When an object o is dominated by a
skyline object s (i.e., all the attributes of o is larger than or
equal to the attributes of s), but the distance from a graph
node v to o is less than the distance from v to s, the object
o has the possibility to form a skyline candidate according
to Lemma 4. Furthermore, we utilize the first approximate
heuristic to control that such objects’ distance to v need to be
less than the approximate range τ .

D. Goodness of approximate results

To evaluate the quality of an approximate result setRapprox,
we define a goodness score for Rapprox, score(Rapprox,R),
where R is the solution set returned from the exact algorithm.

Let DR and Dapprox be the set of distinct base objects in R
and Rapprox. Given an object o ∈ DR ∩Dapprox, let P(o,R)
and P(o,Rapprox) contain all the graph-constrained paths of o
in R and Rapprox respectively. We can define the goodness of
approximate result set by considering several intuitions. First,
if the approximate result set share more common base objects
with the exact result set, Rapprox is better. To represent this
intuition, we calculate the score using the base objects that
are in both the exact and approximate result sets. The second
intuition is that, for a base object o in DR, we prefer to

see that its graph-constrained paths are the same or similar
to the graph-constrained paths of o in Dapprox. To represent
this intuition, we define a score for each object o as

score(o) = maxp∈P(o,R)∧p′∈P(o,Rapprox)(sim(p, p′))

If P(o,R) or P(o,Rapprox) is empty, this score is 0, which
means that the base object is not in both result sets. The
similarity score of two paths sim(p, p′) is defined to be the
cosine similarity of their path cost.

Definition 9 (Goodness of approximate result set). The good-
ness of Rapprox is defined as

score(Rapprox,R) =
∑

o∈(DR∩Dapprox)

score(o)

|DR|
. (3)

Example 6. Assume that R contains four path constrained
objects, op111 , op212 , op222 , and op313 , and Rapprox consists of
three path constrained objects, op

′
21

2 , op
′
31

3 , and op
′
41

4 . Let p21 =
p′21. Then, DR = {o1, o2, o3}, Dapprox = {o2, o3, o4}, and
DR ∩Dapprox={o2, o3}.

score(o2)=max{sim(p21, p
′
21), sim(p22, p

′
21)}=sim(p21, p

′
21)

which is 1 since p21=p′21. For o3, score(o3) = sim(p31, p
′
31).

Thus, the overall
score(Rapprox,R) = score(o2)+score(o3)

2 =
1+sim(p31,p

′
31)

2 .

The way that we define the goodness score guarantees that
it is in the range of [0,1].

VI. EXPERIMENTS

The algorithms have been implemented using JAVA 1.8.
The experiments are conducted on a desktop equipped with an
Intel(R) CPU with 3.60 GHz and 32 GB RAM. The transporta-
tion network is stored using the Neo4j graph database (https:
//neo4j.com). Neo4j is adopted because it has shown to be one
of the most popular graph databases according to DB-Engines
ranking (https://db-engines.com/en/ranking/graph+dbms). The
default page size and cache size of the Neo4j database are set
to 2 KB and 2 GB respectively. The JAVA APIs of Neo4j are
used to manage and access the graph data.

A. Data and query

We utilize both synthetic and real data to test our proposed
methods. For synthetic data, we first generate the synthetic
graphs to simulate the public transportation networks. The
default average degree is set to four to simulate the real-world
application where an intersection generally has four different
road segments. The range of the degree is 1 to 5. The adjacent
graph nodes in a public transportation line are generated such
that the distance between them is in a given range and the
edge direction does not differ much from the previous edge’s
direction in the same transportation line. The attribute values
on each edge are generated following a normal distribution.
Next, we generate the synthetic objects of interest D. For
each object o ∈ D, the number of non-spatial attributes is
set to be three. For each attribute, the values follow a uniform

https://neo4j.com
https://neo4j.com
https://db-engines.com/en/ranking/graph+dbms


distribution in the range of [0,1]. The spatial information of
an object represents the x and y coordinates. The synthetic
objects are generated by letting the number of graph nodes
close to an object follow a Beta distribution. This is to simulate
the real application scenario where the number of bus stops
within a given range of an object forms a curve similar to the
probability density function (PDF) of Beta distribution. Each
synthetic graph has a corresponding set of synthetic objects.

The real data is obtained from three cities, New York
(NY), Los Angeles (LA), and San Francisco (SF), using
rideschedules (https://rideschedules.com) and Google Maps
API. In total, we get 298,022 bus stops and 25,954 objects
of interest (e.g., hotels and restaurants) from the three cities.
For the objects of interest, we remove the objects that do
no have location information and get a set D with 25,854
objects of interest (14,155 for LA, 9,589 for SF, and 2,110
for NY). The MCTN is formed using the bus stops. Each
graph node represents a bus stop. Note that close bus stops
(e.g., the distance is within fifty meters) are treated as one
node. Each graph edge represents a segment in a bus line. The
value of each dimension of the graph edge is generated using
a uniform distribution with the range of [0, 1]. For the objects
of interest, we extract three non-spatial attributes (rating,
price, and interestingness) from the information crawled using
Google Maps. We find the corresponding city for each bus stop
based on its spatial information. Finally, we get 5,127 nodes
and 11,152 edges for NY, 9,041 nodes and 13,615 edges for
SF, and 12,433 nodes and 22,752 edges for LA.

A query point is a randomly chosen object from D. For
each setting in our experiments, we choose 30 queries and
report the averaged results.

For experiments on synthetic datasets, the results may show
fluctuations because the objects of interest D are generated
randomly. To avoid getting unstable results, for the same
experiment setting (e.g., D with 10K objects), we generate
five sets of D with the same size and report the averaged
running results from the five sets.

B. Comparison methods and performance metrics

Since no other methods can be directly applied to solve
our proposed problem, we cannot compare our methods with
other existing approaches. We compare the two exact search
algorithms, ExactAlg-baseline and ExactAlg-improved. We
also compare the two heuristic methods (Approx-range and
Approx-mix) and their corresponding versions that utilize
indexes to find approximate solutions. For comparison
purpose, we design and implement an A*-based algorithm
by using range search to find approximate solutions. This
algorithm is denoted as Approx-A*-range and is explained
below. We did not implement an A*-based exact search
algorithm due to its expensive computation (as analyzed in
Section IV). Our experimental results in Section VI-F show
that even the Approx-A*-range cannot outperform our exact
search algorithm.

A*-based algorithm using range search. Approx-A*-range
finds approximate solutions by using range search. It needs
to consider every object in D \ q as a target object. For a
fixed target object o, this method limits the starting graph
nodes to be the nodes that are within a distance (τ ) from
the query point, and the ending graph nodes to be within a
distance of o by utilizing the heuristic of approximate range
search (Section V-A). This method utilizes a priority queue
to keep the graph nodes that have been explored. For a given
node v popped out from the priority queue, if the cost of its
constrained skyline paths and the estimated cost from v to the
target object o is dominated by an existing skyline path, this
node is not expanded. The lower bound of the cost from v to
a possible ending graph node is calculated using a landmark
index as in [15]. Note that for different target objects, we are
not naively repeating this process. Instead, we use the solutions
that are found so far (may be from different target objects) to
conduct pruning.

Algorithm 5: Method Approx-A*-range
Input : an MCTN G, a query point q, the set of objects of interest D, the

distance threshold τ
Output: the set of skyline solutions R

1 begin
2 Initialize the result set R = ∅;
3 Initialize the candidate result set Dcand to contain the objects in D that

are not dominated by q;
4 foreach o ∈ Dcand do
5 queryResultSourceDestination(q,o,R,τ ,G)
6 return R;

Algorithm 6: Function queryResultSourceDestination
Input : a query point q, a target object o, current skyline solutions R, the

distance threshold τ , an MCTN G
Output: updated skyline solutions R

1 Initialize a priority min-queue Q to be empty;
2 vnearest= the nearest graph node to q;
3 Q.enqueue(vnearest);
4 while Q is not empty do
5 v = Q.pop() ;
6 if v is not visited && dist(q, v) < τ then
7 Create a dummy path dp;
8 v.visited = true;
9 addToSkyline(dp, v.skypaths);

10 foreach path p ∈ v.skypaths do
11 if p.expanded = fasle then
12 foreach vnext ∈ neighbors(v) do
13 pnext = path(p, vnext);
14 if the lower-bound cost from pnext to o is not dominated

by any solution ∈ R && pnext is a new skyline path
from q to vnext then

15 vnext.Skypaths.add(pnext);
16 Q.enqueu(vnext);
17 foreach v is visited && dist(v, o) < τ do
18 foreach pc ∈ v.skypaths do
19 Create opc with attributes updated using o’s attributes, cost(pc), and

dist(pc.end, o);
20 addToSkyline(opc ,R) ;
21 return R;

The detailed algorithm is shown in Figure 5. We explain
how we calculate the lower-bound cost of the constrained
prefix path (pnext = path(p, vnext)) for a potential target
object o (Line 14 in Algorithm 6) in what follows.

Let Vt be the set of the graph nodes that are within distance
τ from a possible target object o. Let v′t be the nearest graph
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node to o. The lower bound of the distance from pnext to o
is dist(v′t, o).

For a graph node vt ∈ Vt, the minimum cost for a path
from pnext.end to vt on dimension i is calculated using a
landmark index. This cost is denoted as costi(pnext.end, vt).
For the set Vt, the lower-bound cost for a dimension i from
pnext.end to Vt (denoted as min cost[i]) is the minimum of
costi(pnext.end, vt) for all the nodes in Vt. I.e.,

min cost[i] =MIN{costi(pnext.end, vt)|vt ∈ Vt}.

For o, the lower bound of the cost from pnext.end to it consists
of three components: (i) the attribute values of the object o, (i)
the total cost from q to pnext.start and from v′t (o’s nearest
graph node) to o, and (iii) the estimated lower-bound cost from
pnext.end to Vt. I.e.,

lb(pnext, o) = (o.attr[1],· · ·, o.attr[dD],
dist(q, pnext.start)+dist(v

′
t, o),

cost(pnext)[1] +min cost[1], · · · ,
cost(pnext)[dG] +min cost[dG]).

Running time are reported to show the efficiency of the
different methods. We do not report the disk I/Os as these
algorithms are very computation heavy. Disk I/Os are not as
representative as the total query time to evaluate the efficiency
of different methods.
Goodness of approximate solutions. For the approximate
solution sets, we report their goodness scores.

C. Performance of the exact search methods

In this section, we test the performance of the pro-
posed exact search methods, ExactAlg-baseline and ExactAlg-
improved, using synthetic data. These results are to show the
pruning power of the improved algorithm ExactAlg-improved.
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Fig. 5. Exact search algorithms (|D| = 1,000)

# of graph nodes
(in millions) 0.001 0.05 0.1 0.2 0.5 1

Running time
Speed-up ratio 2.46 2.16 1.94 2.02 2.03 1.85

# of candidates
Reduction ratio 22.71 16.89 10.44 12.24 16.25 9.75

TABLE I
SPEED-UP OF THE ExactAlg-improved OVER ExactAlg-baseline

The first set of experiments compare these two algorithms
using different graphs where the number of graph nodes vary
from 1,000 to 1,000,000. In these experiments, we fix the

synthetic dataset with 1,000 objects of interest (i.e., |D| =
1,000). The running time of the two algorithms are shown
in Figure 5(a). The results show that the ExactAlg-improved
algorithm can speed up ExactAlg-baseline more than 1.8 times
(Table I). This is mainly because it reduces the number of sky-
line candidates (Section IV-B2). The reduction of the skyline
candidates can be verified using the results in Figure 5(b) and
Table I, which shows that the improved exact search algorithm
can reduce the number of skyline candidates to be 1

10 to 1
22 of

the candidates in the baseline algorithm. The reduction of the
running time is less than the decrease of the candidate number
because the running time is also affected by other factors.
In particular, graph traversal (Step 1 of ExactAlg-baseline)
is expensive; also, the dominance relationship checking in
addToSkylineImproved is not a constant, it grows with the
number of the candidates.
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Fig. 6. Exact search algorithms (N=10,000)

1 2 3 4 5
average degree of the graph 

100

200

300

400

Ru
nn

in
g 

Ti
m

e 
(S

ec
.) ExactAlg-baseline

ExactAlg-improved

(a) Query time vs. dG

1 2 3 4 5
average degree of the graph 

0.0

0.2

0.4

0.6

0.8

1.0

# 
of

 S
ky

lin
e 

Ca
nd

id
at

es

1e9
ExactAlg-baseline
ExactAlg-improved

(b) # of candidates vs. dG
Fig. 7. Exact search algorithms (N=10,000, |D|=5000)

We also conduct experiments by varying the number of data
objects (the number of graph nodes N is fixed), and varying
the average degree of graph nodes (the number of graph nodes
N and the objects of interest D are fixed). Figures 6 and 7
show the running time and the number of skyline candidates
for the above settings. The results of these experiments show
similar trends as that in Figure 5.

D. Performance of the heuristic approaches

This section evaluates the performance of the heuristic
approaches to find approximate solutions.

1) Query time: This set of experiments compares the effi-
ciency (query time) of the different heuristic methods. We run
the experiments using two different settings. First, we fix the
number of objects of interest to be 1,000 and vary the graph
size from 1K to 1M. The results are shown in Figure 8.

The query time of Approx-mix is faster than Approx-range.
This is because less number of prefix paths are expanded using
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Fig. 8. Heuristic approaches to find approximate solutions (|D|=1,000)

Approx-mix. Due to the same reason, Approx-mix-indexed uses
less time than Approx-range-indexed. The indexed version
of the approaches, Approx-mix-indexed and Approx-range-
indexed, use much less time than their non-indexed coun-
terparts. This shows that the index can help improve the
efficiency dramatically.
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Fig. 9. Heuristic approaches to find approximate solutions (N=10,000)

We further compare the heuristic methods by using different
settings, fixing the graph (N=10,000) and varying the number
of objects of interest (|D|). Figure 9 shows the results. Similar
to the above setting, Approx-mix is faster than Approx-range,
the indexed version of the methods greatly outperform the
non-indexed version, and Approx-mix-indexed uses less time
than Approx-range-indexed.

2) Goodness of approximate solutions: An important mea-
surement of the heuristic methods is the goodness of the
approximate solutions. This set of experimental results shows
the goodness scores of the approximate solution sets found
by the heuristic approaches. Note that, we do not include the
results for the indexed version because the indexed and the
non-indexed versions return the same result set Rapprox for
the same query. We use two settings: (i) fixing the number of
objects of interest to be 1,000 and varying the graph size from
1,000 to 1,000,000, and (ii) fixing the graph size (N=10,000)
and varying the number of objects of interest (|D|).

Figure 10 plots the goodness scores of the approximate
solution sets. This figure shows clearly that the results returned
by Approx-range has higher goodness score than those from
Approx-mix. This is consistent with our intuition that Approx-
mix removes more valid results. Despite these differences, both
algorithms achieve higher than 60% of goodness. Figure 10(a)
shows that the goodness is slightly worse for larger graphs
(larger N ). This is because the skyline paths in larger graphs
are typically longer and contain more information than the
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Fig. 10. Goodness of Rapprox, score(Rapprox,R)

paths used in a smaller graph. Thus the heuristic approaches
have higher probability to lose information.

3) Size of indexes: We show the size of indexes that are
created for graphs with different size. The index size is
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calculated using the data from the second and the third layers
of the index. Figure 11 shows that the index size on disk is
linear to the number of nodes in graphs. This is because the
the number of pointers in the second layer is the same as the
number of objects in the first layer. The number of pointers
in the third layer is a fixed ratio of the number of objects.

E. Compare the approaches to find exact and approximate
solutions

This section reports experimental results that compare the
exact search algorithm ExactAlg-improved with the indexed
version of the heuristic methods. We use the same experimen-
tal setting as Section VI-D by varying N (fix |D|) and varying
|D| (fix N ).

0.0 0.2 0.4 0.6 0.8 1.0
# of graph nodes (in millions)

0

2

4

6

Ru
nn

in
g 

Ti
m

e 
(S

ec
.)

1e3
ExactAlg-improved
Approx-range-indexed
Approx-mix-indexed

(a) Query time vs. N

0 10 20 30
# of objects (in thousands)

0

2

4

6

Ru
nn

in
g 

Ti
m

e 
(S

ec
.)

1e2
ExactAlg-improved
Approx-range-indexed
Approx-mix-indexed

(b) Query time vs. |D|
Fig. 12. Comparison of methods to find exact and approximate solutions

Figure 12 shows the query time of the three methods. The
results show that the methods to find approximate solutions
dramatically outperform the improved exact search algorithm
ExactAlg-improved. This is consistent with the design of these
heuristic methods. The results of the skyline-candidate number
have the same trend in the previous sections. We do not include
such results due to space limitation.



F. Compare Approx-A*-range with other methods

This section compares the performance of Approx-A*-
range with our proposed exact and heuristic search methods,
ExactAlg-baseline, ExactAlg-improved, and Approx-range-
indexed, using synthetic data.
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Fig. 13. Comparison of the exact search algorithms and the heuristic
approaches that use indexes to find approximate solutions (The tests are on
smaller datasets because Approx-A*-range takes very long time to finish even
for smaller graphs; e.g., it uses more than 8 hours to finish for a graph with
10K nodes and D = 30K. )

Figure 13 displays the running time and the number of
skyline candidates of different algorithms for different graph
sizes. Figure 13(a) shows that Approx-A*-range runs much
slower than all of our proposed methods. It is even slower
than the baseline exact search method. This is because that it
needs to examine each object of interest as a possible target
object and the calculation of the lower bound incurs more
computation.

Interestingly, the number of skyline candidates is not
proportional to the running time when Approx-A*-range is
involved. Figure 13(b) shows that both Approx-range-index
and Approx-A*-range could reduce the number of skyline
candidates dramatically when compared with the exact search
algorithms. This shows that the Approx-A*-range heuristic
algorithm indeed can reduce the search space by using the
lower-bound estimation and the pruning strategy although its
running time is still high due to reasons stated above.

G. Experimental results using real datasets

Besides running experiments on synthetic data to test the
performance of our proposed methods in different settings, we
also test our proposed methods on the real datasets collected
for three cities, LA, SF, and NY. For the Approx-range and
Approx-mix methods, the range search range τ is set to 1 Km.

Table II shows the query time of different methods and
the goodness scores of the sets of approximate solutions.
For the smaller NY dataset, the exact search algorithm can
finish running queries using reasonable amount of time (3.34
seconds). For the larger SF and LA datasets, the exact search
algorithms run slowly while the heuristic methods are 5 to
8 times faster. We observe that the goodness score of the
approximate solutions for Approx-range is high (0.79 and
0.93) for SF and LA respectively, but is low (0.39) for NY
dataset. This is because the same τ is utilized for all the
datasets. A range search using the fixed τ on a larger graph

Query Time (in Sec.) # of Skyline Candidates
NY SF LA NY SF LA

ExactAlg-baseline 9.47 175.06 - 3.8× 107 83× 107 -
ExactAlg-improved 3.34 60.22 4207.08 318855 0.7× 107105× 107

Approx-range 1.06 11.67 591.59 10199 122510 1.8×107

Approx-range-indexed 0.24 0.23 14.40 10199 122510 1.8×107
Approx-mix 0.09 1.67 75.63 830 19444 995924
Approx-mix-indexed 0.08 2.54 3.60 830 19444 995924

(a) Running time of different methods on real datasets (For the LA dataset,
ExactAlg-baseline does not report any results within 5 hours.)

NY SF LA
Approx-range 0.39 0.79 0.93
Approx-mix 0.21 0.56 0.65

(b) Goodness of approximate solution sets

TABLE II
COMPARISON OF DIFFERENT METHODS ON REAL DATASETS

loses less information (i.e., starting nodes for graph traversal)
than the search over a smaller graph.
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Fig. 14. Query evaluation on SF data with varying τ

We further show the effect of τ to the different search
algorithms and show the results in Figure 14. Figure 14(a)
shows that Approx-range uses more time for bigger τ . This
is because bigger τ values allow more graph nodes to be
the starting nodes for graph traversal. The goodness values
increase with τ for Approx-range. However, the goodness
values decrease with τ for Approx-mix. This is because a larger
τ allows more objects to have dummy paths in their skyline
paths and this worsens the dummy path issue (Section V-B)
when we expand limited number of skyline paths.

VII. CONCLUSIONS

In this paper, we introduce a new variant of skyline queries,
which are constrained by MCTNs. The major challenge to
address this type of queries comes from the large search
space of the network and the huge number of candidates. We
propose two exact search algorithms to evaluate such queries.
The first exact algorithm ExactAlg-baseline can find exact
skyline answers, but suffers from expensive calculations. The
second exact search algorithm ExactAlg-improved improves
ExactAlg-baseline by implementing several Lemmas. Besides
these, we further propose two heuristic methods to find ap-
proximate solutions for such queries. The heuristic methods
utilize a range search to narrow the space of graph traversal
(Approx-range) and expand limited number of intermediate
paths to reduce the number of candidates (Approx-mix). The
experimental results on both the synthetic and real data show
that ExactAlg-improved outperforms ExactAlg-baseline. The
approximate solutions are reasonably comparable to the exact



solutions, and the methods to find the approximate solutions
run much faster than the exact search algorithms.
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