
TECHNICAL REPORT

TR-CS-NMSU-2022-02-23

Qixu Gong
Huiping Cao

Department of Computer Science
New Mexico State University

1

Backbone Index to Support Skyline Path Queries over
Multi-cost Road Networks

Supplementary materials

1 DETAILED ANALYSIS OF FACTORS
AFFECTING SPQ EVALUATION

To get a better understanding of the factors that affect the perfor-
mance of Skyline Path Query (SPQ) evaluation, we conduct a de-
tailed analysis of the relationships between SPQ answers and the
characteristics of the underlying graphs using two real-world road
networks, California [2] (L_CAL) with 21,048 nodes and 21,693
edges and a subgraph of the road network in New York City [1]
(C9_NY_22K) containing 22,000 nodes and 30,900 edges. The
L_CAL and the C9_NY_22K datasets are used in previous works [5]
and [6, 9] respectively. These two networks have similar size from
the perspective of the number of nodes and edges. There is only one
cost dimension for the edges in the original graphs. We generate
two more cost dimensions for each edge by letting the cost follow a
uniform distribution in the range of [1,100], which is a commonly
used strategy when the evaluation is conducted on multi-cost road
networks [3–5]. In total, three cost weights are associated with each
edge. The detailed node degree distributions of the two networks are
listed in Table 1.

Table 1: Node-degree distribution of two graphs

L_CAL C9_NY_22K
Dregree # of nodes Dregree # of nodes
1 182 1 2,836
2 19,683 2 3,611
3 915 3 10,595
4 255 4 4,843
5 7 5 105
6 5 6 10
8 1 - -

With these two similar size graphs, we conduct a detailed analysis
to understand how a SPQ algorithm performances differently. We
implement the SPQ method in [5] that grows skyline path solutions
using the best-first search strategy and applies pruning techniques
with landmark indexes. Additionally, we speed up the query process
by initializing the result set with the shortest path on each dimension.
We call this improved version of [5] the Baseline Best-first Search
method (abbreviated as BBS). We randomly generate 300 queries
on each road network. We summarize basic statistics of the query
results and show them in Table 2.

Table 2: SPQ query performance comparison

L_CAL C9_NY_22K
avg. query time (ms) 2,967 68,056
avg. # of hops of the shortest path 287 92
avg. # of skyline path results 82 1,097
avg. coverage 26% 24%
avg. # of nodes in the results 3% 1.5%
of unfinished queries in 30 min. 0 42

Despite the two road networks have similar numbers of nodes
and edges, the results show a vast difference in query performance.
The query time on C9_NY_22K is almost 23 times more than that
for queries on L_CAL. The number of the skyline paths returned
from C9_NY_22K is 10 times more than that from L_CAL. Even
worse, 42 queries cannot finish in half an hour on the C9_NY_22K
graph. A major reason behind this performance difference is that the
degree distribution is different. Most of the nodes have degree 2 on
the L_CAL, but 3 on the C9_NY_22K dataset.

We further analyze the average number of nodes that are visited
during the query process (avg. coverage) and the number of distinct
nodes showing in the returned paths. The results on these two char-
acteristics are similar. These results indicate that the query process
has similar exploration behavior, and the returned paths consist of
approximately the same sets of nodes. However, when more nodes
have a higher degree (even one more), there are more ways that
paths can be constructed because more edges can be selected when a
candidate path reaches a high-degree node. It means the probability
that other paths do not dominate the candidate path is high when the
node’s degree is high.

The average length of the shortest paths on all the dimensions is
287 on the L_CAL, which is much higher than 92 on the C9_NY_22K
graph. Interestingly, we note that the number of the skylines paths
found on L_CAL is 82, which is much smaller than 1097 on C9_NY_22K.
It further confirms that more skyline paths are found when the nodes
have a higher degree, despite that these skyline paths have fewer
hops. This detailed analysis shows that the skyline query’s perfor-
mance is highly sensitive to the degree distribution of a network.

Table 3: Analysis of running BBS algorithm on C9_NY_22K

of hops of
shortest paths

Query time
(ms)

of
skyline paths

coverage
(%)

of unfinished
queries

10 4.25 12.88 0.57 -
20 17.69 38.31 1.76 -
30 116.00 64.07 3.37 -
40 455.23 202.59 5.11 -
50 640.65 202.83 8.69 -
60 2459.07 415.63 11.61 -
70 6544.39 613.65 19.28 -
80 11825.90 529.80 23.32 -
90 31577.19 1039.26 29.01 -

100 77220.57 1641.71 36.64 -
110 132296.29 1750.67 46.17 -
120 189357.00 2551.67 46.19 1
130 395374.64 3764.79 59.24 3
140 118297.20 1574.20 48.92 7
150 353904.25 5249.13 62.89 5

We further examines the effect of path hops on the performance
of SPQ evaluations by running the BBS method over C9_NY_22K.
The results are reported in Table 3. The results show that the number
of path hops profoundly influences the number of results and the

Backbone Index to Support Skyline Path Queries over Multi-cost Road Networks

query time. Even when the number of hops increases with 10 more
hops, the query time and the size of the result set can be doubled.
For example, when the number of hops increases from 50 to 60, the
result size and the query time are increased from 202.83 skyline
paths and 640.64 ms to 415.63 paths and 2459.07 ms (on average)
respectively. The number of queries that cannot finish in 30 minutes
increases when the number of hops reaches 140. The query time
and the number of skyline paths have a sudden drop at 140 and
jump back at 150. This is due to the increasing number of unfinished
queries that lead to more missing results.

We also examine the effect of the node coverage to the query
performance. Although BBS uses strategies and auxiliary structures
to reduce the search space [5], its exploration space can still reach up
to more than half of the network nodes. When the number of hops
reaches 150, the nodes that are visited during the query process are
more than 60% of the nodes in the network. These statistics show
that the number of path hops plays a critical role in SPQ evaluation.
It further confirms the difficulty of improving SPQ algorithms due to
high node coverage.

2 INDEX MAINTENANCE FOR NETWORK
UPDATES

Road networks may change. We discuss how to maintain the back-
bone index when a road network is updated. It has shown [6, 7]
that allowing network updates to support shortest-path queries is
challenging. Thus, updating the index that supports SQPs is more
complicated. We propose a practical method to update the backbone
index with low overhead for road network updates compared with
the huge index construction time. We consider four types of oper-
ations: (i) insertion of a new vertex, (ii) removal of a vertex, (iii)
insertion of an edge, and (iv) deletion of an edge.

Operation (i), node insertion. We define the insertion as adding
a new node 𝑢 with a set of new edges 𝐸𝑢 = {(𝑢, 𝑣)}. The operations
involve two steps. The first step finds all the 𝐸𝑢 edges {(u,v)} that
connect to any degree-1 edges 𝐸𝑠 , and conducts edge removal on
𝐸𝑠 ∪ {(𝑢, 𝑣)} by running regular summarization (i.e., removing the
degree-1 edges from graph 𝐺𝑖 until all the remaining nodes in 𝐺𝑖

have a degree 2 or more). The second step processes the 𝐸𝑢 edges
{(𝑢, 𝑣)} that do not connect to any degree-1 edges by updating the
skyline paths from 𝑢 to the highway entrances of the nodes in the
influenced dense clusters. A dense cluster is influenced when an 𝐸𝑢
edge connects to it. In particular, we first assign 𝑢 to a non-noise
cluster𝐶0, 𝑗 at𝐺0, where more edges in 𝐸𝑢 connect to the cluster𝐶0, 𝑗 .
Then, we put all the clusters that the node 𝑢 is connected to into a
first-in-first-out (FIFO) queue, and recursively update the backbone
index from 𝐺0 to 𝐺𝐿 by de-queuing one cluster (say 𝐶𝑖, 𝑗) from the
queue and recalculating the skyline paths from 𝑣 ∈ 𝐶𝑖, 𝑗 to their
highway entrance 𝐻 𝑖+1

𝑣 . After this, we find all the clusters 𝐶𝑖+1,𝑘 in
the abstracted graph 𝐺𝑖+1, such that 𝐶𝑖, 𝑗 .𝑉 ∩𝐶𝑖+1,𝑘 .𝑉 ≠ ∅, and put
them to the FIFO queue. At the end, the landmark index of 𝐺𝐿 is
rebuilt.

If the aggressive summarization strategy, which condenses all
single segments, is triggered at one level during index update, the
skyline paths consisting of single segments need to be recomputed.
If the nodes and the edges on a single segment 𝑠𝑒𝑔 is deleted, 𝑠𝑒𝑔 is

split into small segments and skyline paths are recalculated on them.
The new labels are used to update the existing labels subsequently.

Operations (ii) node removal, (iii) edge insertion, and (iv) edge
removal. These operations are based on the operation of inserting
new nodes. Adding a new edge is a special case of inserting of a new
node with one edge. When deleting a node and an edge, the dense
clusters containing the target node and edge are determined and the
index is updated with a similar process as the node insertion.

3 EXTENDED TO SUPPORT ONE-TO-ALL
SPQS

The query processing algorithm (Algorithm 3) can be extended to
support one-to-all SPQs that return approximate skyline paths to all
other nodes from a given query node in a graph 𝐺 . The modification
mainly occurs in the loop for concatenating the backbone paths from
the target node 𝑣𝑡 to the highest level graph 𝐺𝐿 (Lines 16 - 28). At
first, we initialize D with all the nodes that have labels at 𝐼0 (Line
4) (instead of the target node 𝑣𝑡). Also, the node having labels at
𝐼𝑖 needs to be added to D if it is not in D when the loop executes
at level 𝑖. At last, m_BBS is conducted to find skyline paths from
𝑆𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 to all nodes 𝐺𝐿 .𝑉 at level 𝐿 (Line 32).

4 COMPLEXITY ANALYSIS
4.1 Bound of weights of approximate solutions
To our best knowledge, there is no theoretical analysis about the
goodness of the approximate solutions for SPQ on MCRNs. We
assume that edge weights follow an independent identically dis-
tribution (i.i.d.). We analyze the upper bound by using the worst
approximate path result that can be returned by our method.

LEMMA 1 (UPPER BOUND OF PATH WEIGHTS). Given a graph
𝐺 , its backbone index, a query (𝑣𝑠 , 𝑣𝑡), the upper bound of an ap-
proximate solution path’s weight is 𝑂 ((𝐹𝑣𝑎𝑙)𝐿).

Here, 𝐿 is the height of the index. 𝐹𝑣𝑎𝑙 is the expected summation
of the weights for all the edges in the minimum spanning tree (MST)
over a complete graph with 𝑛 number of nodes (𝑛 is large number).
When 𝑛 approaches infinity, 𝐹𝑣𝑎𝑙 is calculated as Z (3)/𝐹 ′(0) [8]
where Z is the Riemann zeta function that edge weights follow. This
bound is very loose. In the future, we will explore theories to make
this bound tighter.

Proof : Each node belongs to either a dense cluster, a single
segment, a degree-1 edge, or the highest level summarized graph 𝐺𝐿 .
The costs from a node in single segments and degree-1 edges to its
highway entrance do not change after condensing and are kept in the
index. We abstract each dense cluster to a spanning tree utilizing the
degree pair value of edges, which makes it challenging to analyze
the expected summation of weights in the spanning tree. We prove
it using an extreme case of estimating the weight of the minimum
spanning tree (MST) over a complete graph whose edge weights
follow an identically independent distribution (i.i.d.) 𝐹 . According
to [8], the expected weight of the minimum spanning tree (MST)
over a complete graph whose edge weights following an i.i.d. 𝐹 is
𝐹𝑣𝑎𝑙 . Here, 𝐹𝑣𝑎𝑙 = Z (3)/𝐹 ′(0) where Z is the Riemann zeta function
and 𝐹 ′ is the derivative of the distribution function 𝐹 .

Given a query (𝑣𝑠 , 𝑣𝑡) and the original graph 𝐺0, the distance be-
tween 𝑣𝑠 and 𝑣𝑡 on𝐺0, 𝑑𝑖𝑠𝑡 (𝑣𝑠 , 𝑣𝑡 ,𝐺0) = 𝑑𝑣𝑠 +𝑑𝑣𝑡 +𝑑𝑖𝑠𝑡 (ℎ1𝑣𝑠 , ℎ

1
𝑣𝑡
,𝐺1)

if 𝑣𝑠 and 𝑣𝑡 do not belong to the same cluster at𝐺0. Here, 𝑑𝑣𝑠 and 𝑑𝑣𝑡
are the distances from 𝑣𝑠 and 𝑣𝑡 to their corresponding highway en-
trances ℎ1𝑣𝑠 and ℎ1𝑣𝑡 at𝐺1 respectively. 𝑑𝑣𝑠 +𝑑𝑣𝑡 = 𝑂 (2 ·𝐹𝑣𝑎𝑙) because
the maximum distance from a node to its highway entrances is the
weight of the spanning tree, which is 𝐹𝑣𝑎𝑙 . The 𝑑𝑖𝑠𝑡 (ℎ1𝑣𝑠 , ℎ

1
𝑣𝑡
,𝐺1) rep-

resents the distance from ℎ1𝑣𝑠 to ℎ1𝑣𝑡 at graph 𝐺𝑖 where 0 < 𝑖 < 𝐿 that
goes through the summarized graph 𝐺1. Then, 𝑑𝑖𝑠𝑡 (ℎ1𝑣𝑠 , ℎ

1
𝑣𝑡
,𝐺1) =

𝑐_1 · 𝐹𝑣𝑎𝑙 (𝑐1 is a constant factor) if ℎ1𝑣𝑠 and ℎ1𝑣𝑡 meet in a dense
cluster 𝐶1, 𝑗 on 𝐺1. Otherwise, 𝑑𝑖𝑠𝑡 (ℎ1𝑣𝑠 , ℎ

1
𝑣𝑡
,𝐺1) can be defined as

𝑑ℎ1
𝑣𝑠
+𝑑ℎ1

𝑣𝑡
+𝑑𝑖𝑠𝑡 (ℎ2𝑣𝑠 , ℎ

2
𝑣𝑡
,𝐺2), where 𝑑ℎ1

𝑣𝑠
and 𝑑ℎ1

𝑣𝑡
are the distances

from ℎ1𝑣𝑠 and ℎ1𝑣𝑡 to their corresponding highway entrances ℎ2𝑣𝑠 and
ℎ2𝑣𝑡 at a higher level graph 𝐺2. Here, the expected weight of one
edge in 𝐺1 is the expected weight of the spanning tree that con-
denses a dense cluster in 𝐺0, which is 𝐹𝑣𝑎𝑙 . The distance from 𝑑ℎ1

𝑣𝑠

and 𝑑ℎ1
𝑣𝑑

to their corresponding highway entrance on 𝐺2 is (𝐹𝑣𝑎𝑙)2

because 𝐹𝑣𝑎𝑙 is a constant. We can get this using a similar analy-
sis as that used to analyze the distance 𝑑𝑣𝑠 and 𝑑𝑣𝑑 on 𝐺0. Thus,
𝑑ℎ1

𝑣𝑠
+ 𝑑ℎ1

𝑣𝑡
= 𝑐2 · 2 · (𝐹𝑣𝑎𝑙)2 where 𝑐2 is a constant factor.

In the worst case, 𝑣𝑠 and 𝑣𝑡 can not meet until 𝐺𝐿 . We can derive
the distance from 𝑣𝑠 and 𝑣𝑡 that goes through 𝐺𝐿−1 to 𝐺𝐿 as 𝑂𝐿−1 =
𝑐2 · 2 · (𝐹𝑣𝑎𝑙)𝐿 + 𝑑𝑖𝑠𝑡 (ℎ𝐿𝑣𝑠 , ℎ

𝐿
𝑣𝑡
,𝐺𝐿). Let 𝑘 be the length of a skyline

path connecting ℎ𝐿𝑣𝑠 and ℎ𝐿𝑣𝑡 (the highway entrances of 𝑣𝑠 and 𝑣𝑡
on 𝐺𝐿 respectively) on 𝐺𝐿 . The distance go along the 𝐺𝐿 , 𝑂𝐿 =

𝑑𝑖𝑠𝑡 (ℎ𝐿𝑣𝑠 , ℎ
𝐿
𝑣𝑡
,𝐺𝐿) = 𝑐𝑙+1 ·𝑘 · (𝐹𝑣𝑎𝑙)𝐿 (𝑐𝑙+1 is a constant factor), where

one edge on 𝐺𝐿 is the condensed edge from 𝐺0 through 𝐿 levels.
Overall, the bound of the worst case is 𝑂 ((𝐹𝑣𝑎𝑙)𝐿) because

𝑐1 · 2 · 𝐹𝑣𝑎𝑙 + 𝑐2 · 2 · (𝐹𝑣𝑎𝑙)2) + · · · + 𝑐𝐿 · 2 · (𝐹𝑣𝑎𝑙)𝐿 +𝑂𝐿

≈𝑐𝐿 · 2 · (𝐹𝑣𝑎𝑙)𝐿 + 𝑐𝑙+1 · 𝑘 · (𝐹𝑣𝑎𝑙)𝐿 .

□

4.2 Complexity of index construction
LEMMA 2 (INDEX CONSTRUCTION TIME). Given a graph𝐺 , the

parameters 𝑝 and𝑚𝑚𝑎𝑥 , the time to construct the Backbone index of
𝐺 is O(|𝐺.𝑉 |𝑙𝑜𝑔(|𝐺.𝑉 |)). Here, |𝐺.𝑉 | is the number of graph nodes.

Proof : Recall that 𝐿 is the level of the index and 𝑚𝑚𝑎𝑥 is the
maximum size of clusters. The time of building the index at level 𝑖
consists of three major parts.
(i) For level 𝑖, the time for finding skyline paths on a small cluster
𝐶𝑖, 𝑗 is

𝐶𝐷𝑖 𝑗 = 𝑐0 · (| (𝐶𝑖, 𝑗 .𝑉 | + |𝐸𝑖𝑟 |) log(|𝐶𝑖, 𝑗 .𝑉 |)
≤ 𝑐0 · (𝑚𝑚𝑎𝑥 + |𝐸𝑖𝑟 |) log(𝑚𝑚𝑎𝑥)

, where 𝑐0 is a constant factor, 𝐸𝑖𝑟 is the set of removed edges from
𝐶𝑖, 𝑗 , and𝑚𝑚𝑎𝑥 =𝑚𝑎𝑥{|𝐶𝑖, 𝑗 .𝑉 |}.
(ii) The time of finding the spanning tree over a dense cluster is

𝐶𝑠𝑝𝑎 = 𝑐1 · (|𝐶𝑖, 𝑗 .𝐸 |𝑙𝑜𝑔(𝑚𝑚𝑎𝑥))

where 𝑐1 is a constant factor.
(iii) The time to find dense clusters on 𝐺𝑖 is

𝐶𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑐2 · (|𝐺𝑖 .𝐸 |𝑙𝑜𝑔(|𝐺𝑖 .𝑉 |))
≤ 𝑐2 · (𝑑𝑒𝑔 · |𝐺𝑖 .𝑉 |𝑙𝑜𝑔(|𝐺𝑖 .𝑉 |))
= 𝑐3 · |𝐺𝑖 .𝑉 |𝑙𝑜𝑔(|𝐺𝑖 .𝑉 |)

Here, 𝑐2 is a constant factor and 𝑐3 = 𝑐2∗𝑑𝑒𝑔 where 𝑑𝑒𝑔 is the largest
degree of graph nodes. The landmark building at the highest-level
graph is almost constant because of the small size of 𝐺𝐿 . To sum up,
the time complexity for building the indes at level 𝑖 is:

𝐶𝑜𝑚𝑝𝑙𝑖 =
|𝐺𝑖 .𝑉 |
𝑚𝑚𝑎𝑥

(𝐶𝐷𝑖 𝑗 +𝐶𝑠𝑝𝑎) +𝐶𝑐𝑙𝑢𝑠𝑡𝑒𝑟

=
|𝐺𝑖 .𝑉 |
𝑚𝑚𝑎𝑥

(𝑐0 · (𝑚𝑚𝑎𝑥 + |𝐸𝑖𝑟 |) + 𝑐1 · |𝐶𝑖, 𝑗 .𝐸 |) log(𝑚𝑚𝑎𝑥)

+ 𝑐3 ·𝐺𝑖 .|𝑉 |𝑙𝑜𝑔(𝐺𝑖 .|𝑉 |) (1)

≤ |𝐺𝑖 .𝑉 |
𝑚𝑚𝑎𝑥

(𝑐4 ·𝑚𝑚𝑎𝑥) log(𝑚𝑚𝑎𝑥) + 𝑐3 · |𝐺𝑖 .𝑉 |𝑙𝑜𝑔(|𝐺𝑖 .𝑉 |)) (2)

= 𝑐4 · (|𝐺𝑖 .𝑉 | log(𝑚𝑚𝑎𝑥)) + 𝑐3 · |𝐺𝑖 .𝑉 |𝑙𝑜𝑔(|𝐺𝑖 .𝑉 |) (3)

≤ 𝑐5 · (|𝐺𝑖 .𝑉 | (log(𝑚𝑚𝑎𝑥) + 𝑙𝑜𝑔(|𝐺𝑖 .𝑉 |))) (4)

≤ 𝑐5 · (|𝐺𝑖 .𝑉 | (log(|𝐺𝑖 .𝑉 |) + 𝑙𝑜𝑔(|𝐺𝑖 .𝑉 |))) (5)

= 2 · 𝑐5 · |𝐺𝑖 .𝑉 |𝑙𝑜𝑔(𝐺𝑖 .|𝑉 |)) (6)

, where 𝑐4 = 𝑐0 · (𝑚𝑚𝑎𝑥 + |𝐸𝑖𝑟 |) + 𝑐1 · |𝐶𝑖, 𝑗 .𝐸 |, 𝑐5 =𝑚𝑎𝑥{𝑐3, 𝑐4} are
constant factors. In a cluster𝐶𝑖, 𝑗 , |𝐸𝑖𝑟 | ≤ |𝐶𝑖, 𝑗 .𝐸 | ≈ 𝑑𝑒𝑔 · |𝐶𝑖, 𝑗 .𝑉 | and
|𝐺𝑖 .𝐸 | ≈ 𝑑𝑒𝑔 · |𝐺𝑖 .𝑉 |. These relations are used in the derivation from
(2) to (3). And |𝐺𝑖 .𝑉 |

𝑚𝑚𝑎𝑥
|𝐶𝑖, 𝑗 .𝑉 | ≤ |𝐺𝑖 .𝑉 |

𝑚𝑚𝑎𝑥
· 𝑚𝑚𝑎𝑥 = |𝐺𝑖 .𝑉 |, which

means the production of the number of clusters and the average
number of nodes in each cluster equals to the number of nodes of
a graph. In (4), 𝑚𝑚𝑎𝑥 is generally a constant (e.g., 4 in real-world
road networks). Overall, the construction complexity is

𝐿∑
0
𝑐6 · |𝐺𝑖 .𝑉 |𝑙𝑜𝑔(𝐺𝑖 .|𝑉 |) = 𝑐7 · |𝐺.𝑉 |𝑙𝑜𝑔(|𝐺.𝑉 |)

where 𝑐6 and 𝑐7 are constant factors. The index level 𝐿 is con-
trolled by the parameter 𝑝 because it is decided by the number of
edges and nodes removed in each abstracted graph. 𝐿 is almost
constant in the backbone index once 𝑝 is set. □

4.3 Space complexity
LEMMA 3 (INDEX SPACE). Given a graph 𝐺 , the parameter 𝑝

(used to control the percentage of the nodes removed in a cluster),
the maximum size of a dense cluster 𝑚𝑚𝑎𝑥 , and the number 𝑑 of
weights for each edge in 𝐺 , the size of the Backbone index is of
O(|𝐺.𝑉 |𝑚𝑚𝑎𝑥𝑆𝑛𝑑), where 𝑆𝑛 is the average number of skyline paths
between every node to its highway entrance in each dense cluster.

Proof : The space use is 𝑐𝑐𝑜𝑛𝑠𝑡 · 𝐿 · |𝐺𝑖 .𝑉 |
𝑚𝑚𝑎𝑥

·𝑚2
𝑚𝑎𝑥 · 𝑆𝑛 · 𝑑 . This is

because the index has 𝐿 levels. In each index level there are |𝐺𝑖 .𝑉 |
𝑚𝑚𝑎𝑥

clusters. In each cluster, there are at most𝑚2
𝑚𝑎𝑥 node pairs. For each

node pair, 𝑆𝑛 is the average number of skyline paths between every
node to its highway entrance in each dense cluster. 𝑑 is the number
of edge weights. The space complexity is O(|𝐺.𝑉 |𝑚𝑚𝑎𝑥𝑆𝑛𝑑).

Here, 𝑆𝑛 is almost constant when𝑚𝑚𝑎𝑥 is small. (𝑆𝑛 is no more
than 10 when𝑚𝑚𝑎𝑥 = 200 in our experiment setting.) □

5 MORE EXPERIMENTAL RESULTS
5.1 One-to-all SPQ evaluation
We evaluate 20 one-to-all SPQs on the subgraphs of C9_NY that
have 5K, 10K, 15K, and 22K nodes, respectively. Since no imple-
mentation supports efficient exact one-to-all SPQs on road networks,

Backbone Index to Support Skyline Path Queries over Multi-cost Road Networks

we implemented a BBS variation as the baseline method that sup-
ports this type of query by removing the lower-bound evaluation
and target checking of the BBS. We denote this method as one_BBS.
Similarly, we call our extended method one_backbone. Table 4
shows that our method one_backbone outperforms the one_BBS on
query time. The query time of one_BBS increases exponentially as
the graph size increases, but our one_backbone offers stability in
this aspect. Further, we verify the quality of the approximate results
by calculating the average goodness from the query node to all other
nodes. The results are also shown in Table 4. The quality is similar
to what we observe from the single-destination queries. We note that
the query performance on C9_NY_10K does not grow exponentially
in graph size, but even worse. This is because the C9_NY_10K has
higher node degrees than other subgraphs. This further confirms
that the degree distribution is a critical factor for any skyline path
queries.

Table 4: Evaluation on one-to-all SPQs

Query time (Sec) Goodness
one_BBS one_backbone Cosine Similarity

C9_NY_5K 7.17 4.76 0.86759
C9_NY_10K 302.52 40.303 0.88954
C9_NY_15K 383.99 13.99 0.89174
C9_NY_22K 862.66 31.17 0.89825

5.2 Evaluation on Backbone index updating
We evaluate the performance of the index updating using 4 subgraphs
of C9_NY and four real-world small road networks, C9_NY (abbre-
viated as NY), C9_BAY (BAY for short), C9_COL (COL for short),
and C9_FLA (FLA for short)). The results are shown in Figure 1. As
mentioned in Section 2, the node insertion is the most fundamen-
tal and complicated operator of the four operations, and the other
three are based on the insertion. So, we evaluate the maintenance
cost only considering the node-insertion operation. We evaluate 20
node-insertion operations where each insertion is to add one random
node with five new edges connected to its 5 nearest neighbor (NN)
nodes. The overall updating time is proportional to the size of the
graph. The updating only needs 350 seconds on the FLA dataset
that contains one million nodes. As the graph size increases, the
ratio of the index update time over the complete index construction
time decreases. The ratio drops from 17.7% to 8.2% when the size
of the C9_NY subgraphs grows from 5K to 22K (Figure 1(a)), and
settles at around 3% on real-world datasets (Figure 1(b)). As road
networks are not updated frequently, thus the index updating time is
acceptable compared with the large full-index construction time.

REFERENCES
[1] 9th DIMACS Implementation Challenge. http://users.diag.uniroma1.it/challenge9/

download.shtml.
[2] Real Datasets for Spatial Databases: Road Networks and Points of Interest. https:

//www.cs.utah.edu/~lifeifei/SpatialDataset.htm.
[3] Yi-Chung Chen and Chiang Lee. Skyline path queries with aggregate attributes.

IEEE Access, 4:4690–4706, 2016.
[4] Qixu Gong, Huiping Cao, and Parth Nagarkar. Skyline queries constrained by

multi-cost transportation networks. 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pages 926–937, 2019.

[5] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline queries: A
multi-preference path planning approach. 2010 IEEE 26th International Conference
on Data Engineering (ICDE 2010), pages 261–272, 2010.

5K 10K 15K 22K
12

14

16

18

20

22

Up
da

tin
g

tim
e

(S
ec

.)

Updating time
Upd. time/ Constr. Time 8

10

12

14

16

18

Up
d.

 ti
m

e/
 C

on
st

r.
Ti

m
e

(%
)

(a) Size of C9_NY subgraphs

NY BAY COL FLA
100

150

200

250

300

350

Up
da

tin
g

tim
e

(S
ec

.)

Updating time
Upd. time/ Constr. Time

2.9

3.0

3.1

3.2

3.3

Up
d.

 ti
m

e/
 C

on
st

r.
Ti

m
e

(%
)

(b) Cities

Figure 1: Time to index updating

[6] Zijian Li, Lei Chen, and Yue Wang. G*-tree: An efficient spatial index on road
networks. 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 268–279, 2019.

[7] Liam Roditty and U. Zwick. On dynamic shortest paths problems. Algorithmica,
61:389–401, 2010.

[8] J. Steele. Minimal spanning trees for graphs with random edge lengths. 2002.
[9] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. G-tree: An effi-

cient index for knn search on road networks. In Proceedings of the 22nd ACM
international conference on Information & Knowledge Management, pages 39–48,
2013.

http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

	1 Detailed Analysis of Factors Affecting SPQ Evaluation
	2 Index Maintenance for Network Updates
	3 Extended to support one-to-all SPQs
	4 Complexity analysis
	4.1 Bound of weights of approximate solutions
	4.2 Complexity of index construction
	4.3 Space complexity

	5 More Experimental Results
	5.1 One-to-all SPQ evaluation
	5.2 Evaluation on Backbone index updating

	References

