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Abstract. In this document, we show the proofs for the theoretical results de-
scribed in the paper titled “Decentralized Multi-Agent Reinforcement Learning
in Average-Reward Dynamic DCOPs” submitted to AAAI 2014.

In this paper, we consider MDPs where a joint state can transition to any other
joint state with non-zero probability, that is, the MDP is unichain. We are going to
show the decomposability of the value function of a unichain MDP, thereby leading us
to the property that the Distributed RVI Q-learning algorithm converges to an optimal
solution.

It is known that there always exists an optimal solution for a given unichain MDP
and this solution can be characterized by the V ∗(s) value:

Theorem 1. (Puterman, 2005) There exists an optimal Q-valueQ∗(s,d) for each joint
state s and joint action a in an average-reward unichain MDP with bounded reward
function satisfying:

Q∗(s,d) + ρ∗ = F(s,d) +
∑
s′

P (s′, s,d) max
d′∈D

Q∗(s′,d′) (1)

To simplify the analysis, we assume that the sets of global joint states S and global
joint values D are finite, and that the Markov chains for all the agents, induced by any
policy, are aperiodic. A Markov chain is aperiodic when it converges to its stationary
distribution in the limit (Puterman, 2005).

Additionally, there exists a unique V-value V ∗(s) = maxd∈DQ∗(s,d) for each
joint state s such that

V ∗(s) + ρ∗ = max
d∈D

[F(s,d) +
∑
s′

P (s′, s,d)V ∗(s′)] (2)



with V ∗(s0) = 0 for any initial state s0.

To help us to prove the decomposability of the value function, we first show the
decomposibility of average reward ρ∗ of a given optimal policy:

Lemma 1. For a given unichain MDP, the optimal average reward ρ∗ =
∑m
i=1 ρ

∗
i can

be decomposed into a sum of local average rewards ρ∗i for each reward function fi ∈ F .

PROOF SKETCH OF LEMMA 1: For a given unichain MDP, there always exists a sta-
tionary distribution Pπ(s) of the global joint state s ∈ S in the limit, where π is the
converged global joint policy. Hence, we have the existence of

ρπi =
∑
s∈S

Pπ(s)fi(si,di | si ∈ s,di = π(s))

for each reward function fi ∈ F .

From the decomposability of average reward given by Lemma 1 and the charac-
teristic of V ∗ value given in Theorem 1, we now prove the decomposability of V ∗ as
follows:

Definition 1. P̄i(s′, s,di) is the probability of transitioning to joint state s′ from joint
state s given joint value di and other values following policy Φ with V ∗j (s0j ) = 0 for
each reward function fj ∈ F .

Theorem 2. There exists V ∗i (s) = Q∗i
(
s,di | di ∈ argmaxd∈DQ∗(s,d)

)
and

ρi for each reward function fi ∈ F under an optimal policy Φ(s) = di ∈
argmaxd∈DQ∗(s,d) such that

V ∗i (s) + ρ∗i = fi(si,di | si ∈ s,di ∈ argmax
d∈D

Q∗(s,d))

+
∑
s′

P̄i(s
′, s,di | di ∈ argmax

d∈D
Q∗(s,d))V ∗i (s′) (3)

and V ∗(s) =
∑
i V
∗
i (s).

PROOF SKETCH OF THEOREM 2: We do not show how to decompose Q∗(s,d) into
Q∗i (s,di) but only show that there exists such a decomposition. The proof is based
on the uniqueness of an optimal solution for any unichain MDP, which is given by
Theorem 1.

Step 1: We first propose a modified MD-DCOP and decompose it into a set of sub-
problems, where each subproblem has a corresponding reward function fi.

Step 2: Suppose we know the optimal policy of the original problem, which always
exists due to Theorem 1. Then, for each subproblem in the modified problem, if
we were to fix the other variables (that are not in the subproblem) according to
the optimal policy of the original problem, we can then compute the decomposed
optimal Q-values Q∗i . Additionally, Theorem 1 guarantees the existence of these
decomposed optimal Q-values.



Step 3: Next, we show that the global optimal Q-values (sum of the decomposed op-
timal Q-values) of the modified MD-DCOP is the same as the global optimal Q-
values of the original MD-DCOP.

Step 4: Finally, we show how to decompose the global optimally Q-values, which con-
cludes the proof.

Step 1: Consider a modified MD-DCOP where the transition probabilities are the same
as the original MD-DCOP, but the reward functions for each joint state s and joint value
di are defined as follows:

f̄i(s,di) =

{
fi(si,di | si ∈ s) if di ∈ argmaxd∈DQ∗(s,d)

−C otherwise
(4)

where C is a very large constant.

Step 2: We now show the existence of the decomposed Q-values Q̄∗i (s,di) for each
reward function fi. First, set the policy of every other variable that is not in the sub-
problem defined by reward function fi to their respective optimal policy in the original
MD-DCOP. Also set the transition probabilities P̄i(s′, s,di) according to the premise
of Theorem 2 and set the reward functions f̄i(s,di) according to Equation 4.

According to Theorem 1, there exists a decomposed Q-value Q̄∗i for this subproblem
such that

Q̄∗i (s,di) + ρ∗i = f̄i(s,di)

+
∑
s′

P̄i(s
′, s,di) Q̄

∗
i

(
s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′)

)
(5)

where ρ∗i corresponds to the local average reward of the subproblem, as shown in
Lemma 1.

Step 3: Then, for the globally optimal joint value d∗ = argmaxd∈DQ∗(s,d), let d∗i
to denote the local joint value in d∗, Q̄∗(s,d∗) =

∑
i Q̄
∗
i (s,d

∗
i ), and F̄(s,d∗) =∑

i f̄i(s,d
∗
i ). Summing over all subproblems, we get

Q̄∗(s,d∗) + ρ∗

=
∑
i

[
Q̄∗i (s,d∗i ) + ρ∗i

]
=
∑
i

[
f̄i(s,d

∗
i )

+
∑
s′

P̄i(s
′, s,d∗i ) Q̄∗i

(
s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′)

)]
=
∑
i

f̄i(s,d
∗
i )

+
∑
i,s′

[
P̄i(s

′, s,d∗i ) Q̄∗i
(
s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′)

)]
= F̄(s,d∗)

+
∑
s′

[
P (s′, s,d∗)

∑
i

Q̄∗i
(
s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′)

)]



= F̄(s,d∗) +
∑
s′

[
P (s′, s,d∗) max

d′∈D
Q̄∗(s′,d′)

]
(6)

This equation is in the form of Equation 1, which characterizes Q̄∗(s,d∗) as a solution
to the modified problem. Additionally, one can also show that the Q-value Q∗(s,d∗) of
the original problem is also a solution to the modified problem using the same process
as in Equation 6. Since V ∗(s) is unique according to Theorem 1, it must be the case
that V ∗(s) = Q∗(s,d∗) = Q̄∗(s,d∗).

Step 4: Now, let’s define the decomposed Q- and V-values for d∗i as follows:

Q∗i (s,d∗i ) + ρ∗i = fi(si,d
∗
i )

+
∑
s′

P̄i(s
′, s,d∗i ) Q̄∗i (s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′)) (7)

V ∗i (s) = Q∗i (s,d∗i ) (8)

We now show that Q∗i (s,d
∗
i ) = Q̄∗i (s,d

∗
i ):

Q∗i (s,d∗i ) = fi(si,d
∗
i )− ρ∗i

+
∑
s′

P̄i(s
′, s,d∗i ) Q̄∗i (s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′))

= f̄i(si,d
∗
i )− ρ∗i

+
∑
s′

P̄i(s
′, s,d∗i ) Q̄∗i (s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′))

= Q̄∗i (s,d∗i ) (9)

Therefore,

V ∗i (s) + ρ∗i

= Q∗i (s,d∗i ) + ρ∗i

= fi(si,d
∗
i ) +

∑
s′

P̄i(s
′, s,d∗i ) Q̄∗i (s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′))

= fi(si,d
∗
i ) +

∑
s′

P̄i(s
′, s,d∗i )Q∗i (s′,d′i | d′i ∈ argmax

d′∈D
Q∗(s′,d′))

= fi(si,d
∗
i ) +

∑
s′

P̄i(s
′, s,d∗i )V ∗i (s′) (10)

Finally, we now show that the V-value V ∗(s) is a sum of its decomposed components
V ∗i (s,d∗i ):

V ∗(s) = Q̄∗(s,d∗)

=
∑
i

Q̄∗i (s,d∗i )

=
∑
i

Q∗i (s,d∗i )

=
∑
i

V ∗i (s,d∗i ) (11)



which concludes the proof.

As a result of the existence of the local value V ∗i (s), we can derive the convergence
proof of our distributed RVI Q-learning algorithm:

Theorem 3. The Distributed RVI Q-learning algorithm converges to an optimal solu-
tion.

PROOF SKETCH OF THEOREM 3: Let d denote the global joint value taken by all the
variables in the current iteration, and di denote the local joint value taken by variables
in the scope of reward function fi. Additionally, let s denote the current global state,
and s′ denote the next global state as a result of taking the joint value d.

Now, let Hi be the mapping defined by

(HiQi)(s,di) = fi(s,di)

+
∑
s′i

P̄i(s
′, s,di)Q(s′,d′i | d′i ∈ argmax

d′∈D
Q(s′,d′))− ρi

= fi(s,di) +
∑
s′i

P̄i(s
′, s,di)V (s′)− ρi

with V (s′) = Q(s′,d′i | d′i ∈ argmaxd′∈DQ(s′,d′)). Since Hi is non-expansive, that
is,

‖HiQi −HiQ
′
i‖∞ ≤ ‖Qi −Q′i‖∞

and the corresponding ODE of HiQi

Q̇i(t) = Hi(Qi(t))−Q(t)

has at least one solution according to Theorem 2,Qi thus converges to the optimal value
Q∗i using the result in (Abounadi, Bertsekas, and Borkar, 2001).
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