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Abstract. This chapter provides a broad overview of how logic pro-
gramming, and in particular Answer Set Programming, can be used to
model and solve some popular and challenging classes of problems in the
general domain of bionformatics. In particular, the chapter explores the
use of ASP in Genomics studies, such as Haplotype inference and Phy-
logenetic inference, in Structural studies, such as RNA secondary struc-
ture prediction and Protein structure prediction, and in Systems Biology.
The chapter offers a brief introduction to biology and bioinformatics and
working ASP code fragments for the various problems investigated.

1 Introduction

Recent advances in the field of Biology have uniquely built on the use of com-
putational methods to model, simulate, and sift through dauntingly large data
repositories. The synergistic interaction with biologists and other scientists in
the life sciences has provided computer scientists with a broad range of challeng-
ing problems. Problems are often hidden or vaguely specified, and emerge only
after long discussions with biologists, physicists, chemistry researchers, medical
clinicians, etc. The effective resolution of these problems has the potential of
having a profound impact on our ability to understand the basic mechanisms
of life and to advance medical research. Bioinformatics can be broadly defined
as the area of Computer Science that deals with modeling and solving problems
from biology and related life sciences.

In very broad strokes, we can classify typical bioinformatics application do-
mains in three general categories. The first class includes applications of compu-
tational methods as a support infrastructure for analysis and experiments; this is
the case, for example, of automated environments for workflow management, de-
scription and annotation of experiments, minimal reporting requirements (e.g.,
MIAME), etc. The second class includes problems that are efficiently solvable
(e.g., in polynomial time), but commonly applied to very large data sets (e.g.,
BLAST searches and other string matching problems [98, 67, 63]). Finally, the
third class includes problems that are intractable (i.e., NP-complete or worse),



even under simplifying assumptions; this is the case, for example, of problems re-
lated to ab-initio protein structure prediction and to synthesis of gene regulatory
networks.

Bioinformatics problems can also be classified according to the target of the
study. Genomics studies focus on the investigation of genomes; genomic studies
often rely on tractable algorithms applied to very large amounts of data, such as
DNA and RNA sequences. Structural studies focus on the prediction and recog-
nition of the spatial structure of biomolecules (e.g., proteins); problems in this
class are often intractable and based on data sets that are relatively smaller than
those used in genomic studies. Systems studies (a.k.a. systems biology) investi-
gate the complex interactions among components (e.g., genes) of a biological
system; these studies typically belong to high complexity classes. The interested
reader can refer to [23, 81, 117] for an introduction to computational biology.

The literature has highlighted the potential for logic programming technology
to address problems in all of these areas (see, e.g. [5]). Prolog and other logic pro-
gramming paradigms have been employed in supporting workflow management—
e.g., data formats interoperation, service composition (e.g., [91])—and querying
tasks—e.g., querying phylogenetic databases [21]. Nevertheless, the capabilities
of logic programming—especially Constraint Logic Programming (CLP) and An-
swer Set Programming (ASP)—to tackle complex combinatorial problems make
this paradigm particularly appealing to address problems in the third class. Logic
programming offers some distinct advantages; in particular:

– Models are rarely stable and static—logic programming provides the level of
elaboration-tolerance to support model modifications and incremental addi-
tion of new knowledge.

– The use of more traditional techniques, such as linear programming, is often
inadequate (e.g., incapable of capturing the complexity of realistic energy
models).

In this manuscript, we will provide a broad overview of how ASP can be used to
model and solve some popular and challenging classes of Bioinformatics prob-
lems. In particular, we will explore ASP in

– Genomics studies: we will investigate problems associated to Haplotype in-
ference and Phylogenetic inference;

– Structural studies: we will investigate problems associated to RNA secondary
structure prediction and Protein structure prediction;

– Systems studies: we will investigate problems associated to reasoning with
biological networks.

The manuscript represents a coherent synthesis of previous research contribu-
tions (as found in the literature, including some the authors’ own work) as well
as novel problem formalizations. The content of this paper also builds on our do-
main knowledge gained by organizing the Workshop on Constraint-based Meth-
ods in Bioinformatics yearly from 2005 (see, e.g., cp2013.a4cp.org/workshops/
wcb), and related publications (e.g., [31, 36, 1]).



2 Biology in a nutshell

The well known central dogma of Biology was first introduced in 1958 by F.
Crick [30] and describes how the biologically relevant information migrates from
DNA sequences to RNA sequences and finally to proteins, whose function is
determined by their 3D structure. The conversion DNA ↪→ RNA is called tran-
scription, while the conversion RNA ↪→ Protein is called translation. Let us
briefly review the above notions in order to understand the central dogma.

DNA (DeoxyriboNucleic Acid) is characterized by a sequence of nucleotides
of 4 kinds: A, C, G, and T (Adenine, Cytosine, Guanine, Thymine). The nu-
cleotides have a different atomic composition, omitted here; however they share
a common substructure, that is used to connect sequences of nucleotides into
polymeric strands of potentially unlimited length. Typically, DNA strands have
a high propensity to pair: two strands can be aligned and facing nucleotides,
one from each strand, can form a relatively stable binding. Some nucleotide
matchings are more favorable than others; in particular, there is a notion of
complementary string. Precisely, given a sequence s ∈ {A,C,G, T}∗, its comple-
mentary sequence s̄ is obtained by reversing the sequence order and by substitut-
ing A↔ T and C ↔ G. A string s and its complementary string s̄ form bindings
between each pair of corresponding nucleotides, and together they fold into the
famous double helix (see, e.g., the DNA strands at both sides of Figure 1).
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Fig. 1. Schematic view of the central dogma: DNA double helix, transcription to RNA
and translation to Protein.

Observed DNA strings are huge (106–1010 nucleotides). Differences between
the DNAs of two members of the same specie are limited (e.g., 1 in 1,000 nu-
cleotides for humans). Some fragments of the DNA encode proteins, as we show
below. These regions encode information as described by the central dogma and
they are called genes. Other regions perform other tasks that are beyond the



focus of this manuscript. With the inception of the Human Genome Project,1 it
became possible to estimate that the human genome contains anywhere between
20, 000 to 25, 000 protein-coding genes [73]—the most recent estimates indicate
such number to be roughly 21, 000 genes. Differences in some nucleotides within
the same gene characterize properties which distinguish one individual from an-
other. The set of all genes of an individual is called genome. Some important
problems dealing with genome analysis are discussed in Section 3 and Section 4.

In order to be transcribed, the DNA double helix is locally detached by
effect of specific molecules (enzymes)—see Figure 1 for an example. The two
single strands are exposed to the surrounding environment and they can, under
proper conditions, be used to initiate the transcription. Other enzymes regulate
the process, which basically ensures that a complementary copy of the DNA
fragment is generated. The new string of RNA (RiboNucleic Acid) is composed
of four kinds of nucleotides: A, C, G, and U , where A, C, G, are the same as in
DNA, while U (Uracil) can be seen as a “variant” of T . The RNA string is single
stranded and it less stable and shorter than a DNA sequence. However, RNA can
perform various tasks within the cell—while DNA sequences are confined in the
cell’s nucleus, for eukaryotic organisms. After the transcription is over, the DNA
double helix is formed again and the new RNA sequence acts as a messenger of
the information drawn from the DNA. From the string manipulation point of
view, a new RNA sequence r is obtained from a substring of s that is copied,
complemented (T replaced by U nucleotides), and reversed.
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Fig. 2. Example of RNA secondary structure.

The RNA string r folds in the space according to a series of favorable matches
between pairs of nucleotides (base pairing). In this case, the presence of a single
strand allows richer shapes w.r.t. the DNA helix. The so-called RNA secondary
structure is the set of its base pairings (see, for example, Figure 2). In particular,
A–U and C–G are the favored base pairings; these are also known as the Watson-
Crick pairs. Note that it is also possible to find U–G pairs. The topology of the
pairs influences and stabilizes the three dimensional functional shape of the
strand. Predicting such three dimensional shape is extremely important, and

1 http://web.ornl.gov/sci/techresources/Human_Genome/



this is the topic of Section 5. It is interesting to note that, unlike the protein
case, an accurate secondary structure prediction for RNA is sufficient to infer
the overall three dimensional shape of the strand.

Let us focus now on the translation phase, namely how RNA sequences de-
termine proteins sequences. In simple terms, triplets of consecutive nucleotides
(codons, see the 3-letter boxes in Figure 1) identify a new object (monomer)
called amino-acid. The association is defined by the so called universal code,
and it is summarized in Figure 3. Even if the translation involves RNA nu-
cleotides, it is a common practice to associate the corresponding DNA triplets,
in order to easily interface to genomic data. There are 43 = 64 possible distinct
codons, whereas only 20 distinct amino acids are commonly generated; this is
caused by the presence of redundant codons that encode the same amino acid.
Notably, specific codons are used to signal to the dedicated machinery of the cell
the start and the stop of a protein encoding sequence.

Amino Codons Amino Codons
Acid Acid

A GCT, GCC, GCA, GCG L TTA, TTG, CTT, CTC, CTA, CTG
R CGT, CGC, CGA, CGG, AGA, AGG K AAA, AAG
N AAT, AAC M ATG
D GAT, GAC F TTT, TTC
C TGT, TGC P CCT, CCC, CCA, CCG
Q CAA, CAG S TCT, TCC, TCA, TCG, AGT, AGC
E GAA, GAG T ACT, ACC, ACA, ACG
G GGT, GGC, GGA, GGG W TGG
H CAT, CAC Y TAT, TAC
I ATT, ATC, ATA V GTT, GTC, GTA, GTG
START ATG STOP TAA, TGA, TAG

Fig. 3. Universal genetic code: DNA triplets are associated to corresponding amino
acid (represented by a single letter)

The process described so far can be summarized as follows: a gene contained
in the DNA, trough RNA transcription, uniquely determines a sequence of amino
acids, called the primary sequence of a protein.

The process of translation assembles amino acids as connected beads, linked
together by peptidic bonds. All amino acid types contain a common part, called
backbone, which is formed by a set of atoms that allows high flexibility, many
degrees of freedom and yet robustness of the chain. One of these atoms is a
Carbon atom called Cα and it shows amenable properties when modeling protein
structures. In particular, given any protein structure in any spatial arrangement,
the Cα’s belonging to two consecutive amino acids in a sequence are roughly
3.81Å apart, with a very low variance. Each amino acid is characterized by a
type-dependent variable group of atoms that influences its specific physical and
chemical properties. This group, called side chain, contains anywhere from 1 to
18 atoms and is connected to the Cα atom of each amino acid.

Another fundamental result by Anfinsen [2] states that the same protein se-
quence immersed in the same environment is capable of folding to a specific, and



often stable, three dimensional shape, called the native state or native confor-
mation. The process is spontaneous and arranges the molecule according to its
minimal free energy. The spatial arrangement of the protein, thanks to the chem-
ical properties of amino acids on the surface, determines the function and how
the protein interacts and binds to other molecules (ligands). Thus, the combi-
nation of the previously discussed central dogma and the properties of proteins
provides the fundamental explanation of how a gene expressed by DNA can
encode a protein that is capable of performing specific functions.

Proteins can contain from as few as 10 amino acids all the way to 1, 000 amino
acids. An average globular protein is about 300 amino acids long. Each amino
acid contains 7–24 atoms; therefore, the number possible arrangements of atoms
in the three dimensional space is well beyond any computational power. Given
the atomic size of proteins and the difficulties to experimentally determine their
native state, the prediction of their structure plays a crucial role. This problem
is discussed in Section 6.

When studying a living cell and/or organism, we need to contend with the
existence of a complex network of (partially known) interactions among the vari-
ous active components. It is often the case that these interactions are not studied
at the lowest level of atomic-level processes, but the are instead abstracted using
higher level perspectives. This is often necessary to address the high computa-
tional complexity underlying these systems and the relatively limited knowledge
about the interaction models. Depending of the level of simplification adopted,
it is possible to investigate different properties of a system of cells and/or organ-
isms. For example, metabolism, some signaling pathways of hormones and cell
cycles can be modeled by fusing experimental data and stochastic analyses.

Systems biology describes the relationships among components through graphs
and provides some computational models that can be used to reproduce particu-
lar behaviors. The typical objects modeled are genes and DNA/RNA fragments,
proteins and enzymes, metabolites and external stimuli. The goals of systems
biology are to (a) analyze the network of interactions, (b) predict the behavior
of the system under specific conditions, and (c) integrate knowledge by merging
diverse experimental data. The representation in use can vary, depending on
the scope and granularity of the modeled system: a specific reaction chain may
involve a few molecule types, a larger scale system may describe a cell behavior
that involves genes expressions (e.g., quantity of RNA transcribed from a spe-
cific gene in a time unit), while a very large system may describe a complete
organism with a more coarse description of single cell activities. Some techniques
developed within the logic programming community to deal with problems from
systems biology are presented in Section 7.

3 Phylogenetics

Phylogenies are artifacts used to describe the relationships among entities (e.g.,
biological entities like proteins or genomes) derived from a process of evolution.



We often refer to the entities studies in a phylogeny as taxonomic units (TUs)
or, simply, as Taxas.

The field of Phylogenetics developed from the domain of biology, as a powerful
instrument to investigate similarities and differences among entities as a result
of an evolutionary process. Evolutionary theory provides a powerful framework
for comparative biology, by converting similarities and differences into events
reflecting causal processes. As such, evolutionary-based methods provide more
reliable answers than the traditional similarity-based methods, as they employ
a theory (of evolution) to describe changers instead of relying on simple pattern
matching. Indeed, evolutionary analyses have become the norm in a variety of
areas of biological analysis. Evolutionary methods have proved successful, not
merely in addressing issues of interest to evolutionary biologists, but in regard
to practical problems of structural and functional inference [107]. Evolutionary
inference of pairing interactions determining ribosomal RNA structure [116] is a
clear case in which progress was made by the preferential use of an evolutionary
inference method, even when direct (but expensive and imprecise) experimental
alternatives were available. Eisen and others [101, 82] have shown how an explic-
itly evolutionary approach to protein “function” assignment eliminates certain
categories of error that arise from gene duplication and loss, unequal rates of
evolution, and inadequate sampling. Other inference problems that have been ad-
dressed through evolutionary methods include studies of implications of SNPs in
the human population [101], identification of specificity-determining sites [66],
inference of interactions between sites in proteins [109], interactions between
proteins [108], and inferences of categories of sets of genes that have undergone
adaptive evolution in recent history [83].

Phylogenetic analysis has also found applications in domains that are outside
of the realm of biology; for example, a rich literature has explored the evolution
of languages (e.g., [62, 94, 102, 42]).

3.1 Modeling

A phylogenetic tree (or simply a phylogeny) is typically a labeled binary tree
(V,E, L, T ,L) where:

• The leaves L represent the taxonomic units being compared;

• The internal nodes V \L represent the (hypothetical) ancestral units; in rare
cases, the internal nodes correspond to concrete entities (e.g., fossils);

• The edges E of the tree describe evolutionary relationships; the structure of
the edges describe the processes that hypothetically led to the evolution of
the TUs, e.g., biological processes of speciation, gene duplication, and gene
loss;

• Commonly, each TU is described by a collection of finite domain proper-
ties, referred to as characters. In the formalization, T = (C,D, f) is the
description of such properties, where

− C = {c1, . . . , ck} is a finite set of characters;



− D = (Dc1 , . . . , Dck) associates a finite domain to each character;2

− f : L × C →
⋃

c∈C Dc is a function that provides the value of each
character for each TU being studied.

• We are often interested in the length of the branches of a phylogeny and/or
the assignment of dates to the internal nodes of the phylogeny; if this feature
is present, then we will describe it as a function L : E → R+.

Whenever we do not have information about length of branches, we omit the
component L from the description of the phylogeny.

For example, Fig. 4 (top) shows a phylogenetic tree for the TUs L = {Mollusca,
Annelida, Arthopoda, Echinodermata, Chordata}. In this example, the set of
characters is C = {Coelom,Dark}—Coelom denotes the presence/absence of
coelom (a body cavity between the intestine and the body walls), while Dark
denotes the phenotypical character of having dark color. In this example, these
are both binary characters, i.e., DCoelom = DDark = {0, 1}. The function f
describing the five TUs is given by the table underneath each TU in the figure—
e.g., f(Annelida,Coelom) = 0 and f(Annelida,Dark) = 0.

While a significant part of the literature focused on binary, rooted trees for
the description of phylogenies, there are several instances in which this model
has to be relaxed.

While true evolutionary histories are indeed rooted trees, the actual location
of the root is often challenging, especially because of the lack of appropriate
historical references. As a result, it is not uncommon to encounter phylogenetic
analyses that make use of unrooted trees (e.g., see Figure 5).

Further relaxations of the binary rooted tree view of phylogenies can also be
found. The binary nature of the tree can be abandoned (allowing the creation
of polytomies, i.e., nodes with more than two children) when a fully-resolved
bifurcating tree cannot be determined with sufficient reliability.

Typically, we assume that each node in a phylogeny has at most one imme-
diate ancestor; this reflects the assumption that evolutionary lineages, once sep-
arate, do not fuse; this assumption follows from the “biological species concept”
based on reproductive isolation [85]. Even the restriction of single parentage may
be abandoned, for strictly biological reasons, in the case of lateral transfer (a
partial mixing of lineages due to transfer of some genes) or reticulate evolution
(a genome-level mixing of lineages due to interbreeding between previously sep-
arate species) [75, 86]. This leads us to consider more general structures, e.g.,
phylogenetic networks.

Phylogenetic Reconstruction The most fundamental problem in phyloge-
netics is the phylogenetic tree reconstruction problem: given a set of data char-
acterizing the entities being studied (e.g., species, genes, languages), identify a
phylogeny that accurately describes the evolutionary lineages among the given
entities. The key problem is how to define what does it mean to “accurately

2 Recent proposals have also started exploring the use of continuous characters, e.g.,
[95].



Fig. 4. A Sample Phylogeny (top); compatible (middle) and incompatible (bottom)
characters
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Fig. 5. Rooted and Unrooted Trees

describe,” i.e., what measure of accuracy is used to compare plausible trees. A
variety of measures have been proposed, and various phylogenetic reconstruction
methods have been proposed based on the specific measure being used to assess
quality of the phylogeny.

A common method used in deriving phylogenies is based on the idea of char-
acter compatibility—a principle derived from Le Quesne’s idea of uniquely de-
rived characters [79, 80].

The intuitive idea of compatibility is as follows: a character c is compatible
with a phylogeny if the TUs that present the same value for such character are
connected by a subtree within the phylogeny. More formally, given a phylogeny
P = (V,E, L, T ,L), with T = (C,D, f), a character c ∈ C is compatible with P
if there is a mapping hc : V → Dc such that:

• For each t ∈ L, we have that hc(t) = f(t, c);

• For each i ∈ Dc, the projection of the graph (V,E) on the set of nodes
V c
i = {t ∈ V | hc(t) = i} has a subgraph that has V c

i as nodes and it is a
rooted tree.

A character that is not compatible with a phylogeny P is said to be incompatible.
The above (sub-tree) requirement implicitly states that when a character changes
(during evolution) it never goes back to the previous value. This is referred to
as the Camin-Sokal requirement; moreover, it also accounts for the requirement
that the “change” occurs in a unique place, known as the Dollo requirement.

In the example of Fig. 4, the character Coelom is compatible with the given
phylogeny—as shown in Fig. 4(middle). On the other hand, the character Dark
is not compatible with this phylogeny (as shown in Fig. 4(bottom)).

The goal, in phylogeny reconstruction, is to determine a phylogeny that max-
imizes the number of characters that are compatible with it. This problem has
been often referred to as the k-incompatibility problem [53]. Formally, the k-
incompatibility problem is the problem of deciding, given a set L of TUs, a
character description T = (C,D, f) of L, and an integer n ∈ N, whether there
is a phylogeny (V,E, L, T ) that has at most k incompatible characters.



Remark 1. We report on some combinatorial considerations. Given a set of n
TUs, the number of unrooted trees can be computed by the formula (using the
so-called double-factorial) (2n−5)!! = 1 ·3 ·5 · · · · ·2n−5, while while the number
of rooted trees is (2n−3)!! = 1 ·3 ·5 · · · · ·2n−3. As such, the number of possible
phylogenies is exponential in the number of TUs given.

The problem considered above, based on k-incompatibility, has been studied
in the literature and determined to be NP-complete [39]. The proof relies on a
reduction of the k-clique problem to the k-incompatibility problem. This result
is not surprising, and similar complexity results can be found for other measures
of phylogeny accuracy—e.g., the popular maximum parsimony method for the
construction of phylogenies is shown to be NP-hard in [38].

3.2 ASP Encoding

The k-incompatibility problem admits an elegant encoding in ASP, thanks to its
natural formulation as a generate-and-test problem.

Let us assume that the TUs for the problem at hand are represented in ASP
as a collection of facts of the form taxa(i) where i is the name of a TU. For
the sake of simplicity, let us assume that the TUs have been numbered and
we use the index of a TU as its name—thus, we will use the ASP declaration

taxa(1..N).

where N is the number of TUs. The character description T will be provided
extensionally using facts of the form:

character(c). %% For each c ∈ C
domain(c, s). %% For each s ∈ Dc

f(i, c, v). %% For each i ∈ L, c ∈ C such that f(i, c) = v

The code is divided in two parts: the tree construction and the computation
of hc. Let us focus on the tree construction first:

(1) num_of_taxas(N) :- N = #count{taxa(L)}.

(2) node(1..2*N-1) :- num_of_taxas(N).

% Each internal node has exactly two children

(3) 2 { edge(I,J): node(J)} 2 :- node(I), not taxa(I).

% Children are of smaller index

(4) :- node(I;J), edge(I,J), I < J.

% Each node but the root has 1 fathers

(5) 1 { edge(I,J): node(I) } 1 :- node(J), num_of_taxas(N), J < 2*N-1.

Nodes 1 to N are used for the TUs and they represent leaves of the tree being
constructed. The tree has 2N − 1 nodes and node 2N − 1 is the root. Lines (1)
and (2) compute the number of TUs and define the nodes of the trees. Line (3)
is used to enforce the binary structure of the tree (each internal node has exactly
two children) and to ensure that the TUs are appearing as leaves of the tree.
Line (4) is used to ensure that edges point from bigger to smaller nodes, allowing



us to remove symmetries. Finally, line (5) allows us to ensure the creation of a
tree, by verifying that each node, except for the root, has exactly one parent.

The second part of the code is used to assess the compatibility of the phy-
logeny with respect to the characters.

% h_c (i.e., h(_,C,_)) is a total function

(6) 1 { h(I,C,V): domain(C,V) } 1 :- node(I), character(C).

% h_c is an extension of f

(7) h(I,C,V) :- taxa(I), f(I,C,V).

% Project the tree on each character

(8) char_edge(C,V,A,B) :- node(A;B), domain(C,V),

edge(A,B), h(A,C,V), h(B,C,V).

% A node can be either a root or not after the projection

(9) no_root(C,V,A) :- node(A;B), domain}(C,V), h(A,C,V),

char_edge(C,V,B,A).

(10) root(C,V,A) :- node(A), domain(C,V), h(A,C,V), not no_root(C,V,A).

% If there are two roots, it is not partially compatible

(11) two_roots(C,V) :- node(A;B), A < B, domain(C,V),

root(C,V,A), root(C,V,B).

(12) partially_compatible(C,V) :- domain(C,V), not two_roots(C,V).

% If for all symbols is partially_compatible, it is compatible

(13) compatible(C) :- character(C).

(14) :- character(C), compatible(C), domain(C,V),

not partially_compatible(C,V).

% Maximize the compatible characters

(15) compats(N) :- N = #count{ compatible(C) }.

(16) #maximize [ compats(N)=N ].

Lines (6) and (7) provide the definition of the function hc, ensuring that
it represents an extension of f . The code in line (8) extracts the edges of the
phylogeny that link nodes with the same value for a given character. This cre-
ates a new tree, composed of edges labeled by the pair (c, v) of character and
corresponding value. The projected trees are analyzed to determine whether
they represent individual trees or forests (lines (11)-(13)). If there are multiple
trees for the same (c, v), then the phylogeny is incompatible for such character
value. Lines (15) and (16) allow us to classify the phylogeny with respect to each
character—as being compatible or not. Finally, Line (18) forces the search for
phylogenies that maximize the number of compatible characters.

Remark 2. In the encoding above and in all encodings in the paper we modeled
the optimization version of the problem. In general, for encoding a decision
version, i.e. is there a solution of size at least (at most) k one have to replace
the last two lines of the encodings with a line of the kind:

k { compatible(C) : character(C) }.

where k can be given as input (e.g., -c k=2)—k should be on the right for
requiring at most.



3.3 Related work

The use of logic programming in the context of phylogenetic inference is a rela-
tively new domain.

Erdem an her collaborators have extensively studied several variants of the
phylogeny reconstruction problem, both using traditional Answer Set Program-
ming, as well as more ad-hoc logic programming systems. A nice survey of their
contributions can be found in [48]. The ASP modeling of phylogenetic reconstruc-
tion using the k-incompatibility problem was originally proposed in [11, 10], later
expanded to address issues of polymorphic characters. This line of work was later
extended to address the problem of formulating criteria of diversity or similarity
in the generation of phylogenies, enabling the creation of pools of phylogenies
that are sufficiently similar/dissimilar [14]; similarly, the problem of dealing with
large numbers of plausible solutions has been addressed in [15] using mechanisms
to weight each phylogeny.

The proposed solution described in the previous section is not suitable to
deal with very large data sets; techniques based on divide-and-conquer have been
successfully adopted to the problem of phylogeny reconstruction [10, 13]; similar
ideas have been used in other areas associated to manipulation of phylogenetic
knowledge (e.g., for supertree construction [100]).

The study of phylogenies that include time calibrations has been first con-
sidered in [50, 51], with special considerations for how to deal with real-valued
time stamps and even larger data sets.

Another line of research focused on the application of logic programming
technology to phylogenetic analysis and, more in general, to phyloinformatics,
can be found in the context of the CDAOStore project [78, 21]. The CDAOS-
tore relies on a triple-based encoding of phylogenetic artifacts (predominantly
phylogenies and associated character data matrices), encoded using the Com-
parative Data Analysis Ontology (CDAO) [92]. Logic programming is employed,
in CDAOStore, to implement a variety of queries to a phylogenetic repository,
including structural queries (to retrieve phylogenies that meet certain structural
constraints) and synthesis queries (e.g., to develop supertrees of sets of collected
phylogenies).

4 Haplotype Inference

The DNA of diploid organisms, such as humans, is organized in pairs of not
completely identical copies of chromosomes. The sequence of nucleotides from a
single copy is called haplotype, while the conflation of the two copies constitutes
a genotype. Each person inherits one of the two haplotypes from each parent.
The most common variation between two haplotypes is a difference in a single
nucleotide. Using statistical analysis within a population, it is possible to de-
scribe and analyze the typical points where these mutations occur. Each of such
differences is called a Single Nucleotide Polymorphism (SNP). In other words, a
SNP is a single nucleotide site, in the DNA sequence, where more than one type



of nucleotide (usually two) occur with a non-negligible population frequency. We
refer to such sites as alleles.

Considering a specific genotype, a SNP site where the two haplotypes have
the same nucleotide is called an homozygous site, while it is heterozygous other-
wise. Research has confirmed that SNPs are the most common and predominant
form of genetic variation in DNA. Moreover, SNPs can be linked to specific traits
of individuals and with their phenotypic variations within their population. Con-
sequently, haplotype information in general, and SNPs in particular, are relevant
in several contexts, such as, for instance, in the study and diagnosis of genetic
diseases, in forensic applications, etc. This makes the identification of the hap-
lotype structure of individuals, as well as the common part within a population,
of crucial importance. However, in practice, biological experiments are used to
collect directly genotype data instead of haplotype data, mainly due to cost or
technological limitations. To overcome such limitations, efficient and accurate
computational methods for inferring haplotype information from genotype data
have been developed during the last decades (for a review, the reader is referred
to [72, 69, 70]).

4.1 Modeling

The haplotype inference problem can be formulated as follows. First, we apply an
abstraction and represent genotypes and haplotypes by focusing on the collection
of ambiguous SNPs sites in a population. Moreover, let us denote, for each site,
the two possible alleles using 0 and 1, respectively. Hence, an haplotype will be
represented by a sequence of n components taken from {0, 1}. Each genotype
g, being a conflation of two (partially) different haplotypes h1 and h2, will be
represented as a sequence of n elements taken from {0, 1, 2}, such that 0 and 1
are used for its homozygous sites, while 2 is used for the heterozygous sites.

More specifically, following [77], let us define the conflation operation g =
h1 ⊕ h2 as follows:

g[i] =

{
h1[i] if h1[i] = h2[i]
2 otherwise

where g[i] denotes the ith element of the sequence g, for i = 1, . . . , n.
We say that a genotype g is resolved by a pair of haplotypes h1 and h2 if

g = h1 ⊕ h2. A set H of haplotypes explains a given set G of genotypes, if for
each g ∈ G there exists a pair of haplotypes h1, h2 ∈ H such that g = h1 ⊕ h2.

Given a set G of m genotypes, the haplotype inference problem consists of
determining a set H of haplotypes that explains G. The cardinality of H is
bound by 2m but, in principle, each genotype having k ≤ n ambiguous sites, can
be explained by 2k−1 different pairs of haplotypes. For instance, the singleton
G = {212} (i.e., k = 2) can be explained in two ways, namely by choosing
H = {011, 110} or H = {010, 111} (see also Figure 6).

Hence, in general, there might be an exponential number of explanations for
a given set G. All of them are, from the combinatorial point of view, “equiva-
lent” and a blind algorithm—not exploiting any biological insight—may result



Fig. 6. The set G = {212, 121} and two possible explanations

in inaccurate, i.e., biologically improbable, solutions. What is needed is a genetic
model of haplotype evolution to guide the algorithm in identifying the “right”
solution(s).

Several approaches have been proposed, relying on the implicit or explicit
adoption of some kind of assumptions reflecting general properties of an under-
lying genetic model. We focus on one of such formulations, namely parsimony.
The main underlying idea is the application of a variant of Ockham’s principle of
parsimony: the minimum-cardinality possible set H of haplotypes is the one to
be chosen as explanation for a given set of genotypes G. For instance the set G in
Figure 6 admits two explanations. The one at the bottom, i.e., {010, 111, 101},
is preferable by the parsimony principle. In this formulation, the haplotype in-
ference problem has been shown in [77] to be APX-hard, through a reduction
from the node-covering problem.

4.2 ASP Encoding

Following [52] let us start by introducing the decision version of the haplotype
inference by pure parsimony problem:

HIPP-DEC Given a set G = {g1, . . . , gm} of m genotypes, each with n sites,
and a positive integer k, decide whether there is a collection H of at most k
distinct haplotypes such that H explains G.

As before, we denote genotypes and haplotypes by sequences of elements from
{0, 1, 2} and {0, 1}, respectively. To simplify the description, we consider H as
made of 2m (not necessarily distinct) haplotypes h1, . . . , h2m and, consequently,
every gi ∈ G is explained by the haplotypes h2i and h2i−1.

Our encoding is close to the problem definition—differently from what used
in [52], where efficiency considerations are also taken into account. We assume
that G is given extensionally using a predicate g/3, where g(i, j, k) means that
the i-th genotype (i ∈ {1, . . . ,m}) in position j (j ∈ {1, . . . , n}) has the value k
(k ∈ {0, 1, 2}). For example, the instance of Figure 6 is represented by:



g(1,1,2). g(1,2,1). g(1,3,2).

g(2,1,1). g(2,2,2). g(2,3,1).

Moreover, the domain predicates geno(1..m), site(1..n), haplo(1..2m) are also
part of the input. In the current example we have:

geno(1..2). site(1..3). haplo(1..4).

We propose the following ASP encoding; we define predicates h(i, j) where
h(i, j) belongs to the model if and only if the corresponding haplotype hi is such
that hi[j] = 1—for i ∈ {1, . . . , 2m} and j ∈ {1, . . . , n}.

% If g(i,j)=0 or 1 assign deterministically h(2i) and h(2i-1).

(1) h(2*I-1,J) :- g(I,J,1).

(2) h(2*I,J) :- g(I,J,1).

(3) :- h(2*I-1,J), g(I,J,0).

(4) :- h(2*I,J), g(I,J,0).

% If g(i,j)=1 then exactly one between h(2i) and h(2i-1) is 1

(5) h(2*I-1,J) :- g(I,J,2), not h(2*I,J).

(6) h(2*I,J) :- g(I,J,2), not h(2*I-1,J).

% Check if an amino acid is a representative

(7) representative_haplo(A) :- haplo(A), not cover_someone(A).

(8) cover_someone(B) :- haplo(A;B), A < B, samehaplo(A,B).

% Verify if two haplotypes are the same

(9) { samehaplo(A,B) } :- haplo(A), haplo(B), A < B.

(10) :- samehaplo(A,B), haplo(A;B), A < B, site(S), h(A,S), not h(B,S).

(11) :- samehaplo(A,B), haplo(A;B), A < B, site(S), not h(A,S), h(B,S).

% Count the number of representative and minimize it

(12) min_haplo(N) :- N = #count{ representative_haplo(A) }.

(13) #minimize[min_haplo(N)=N].

In lines (1)–(4), we deterministically require h(2i, j) and h(2i−1, j) to be in a
model if g(i, j) = 1, and to be out of a model if g(i, j) = 0. In lines (5)–(6), we in-
troduce the non-deterministic choice for h(2i, j) and h(2i−1, j). In lines (7)–(8),
we define a predicate to determine whether the haplotype A is a representative,
namely, moving from 1 to 2m, it is the first occurrence of the same haplotype.
This definition makes use of the auxiliary predicate same haplotype defined in
lines (9)–(11). A minimization of the number of representative haplotypes is
requested in lines (12)–(13).

4.3 Related Work

In [52, 24, 49], the authors present a number of heuristics aimed at establish-
ing lower and upper bounds for the value of k w.r.t. the set of genotypes at
hand. Experimental results (see [52, 24]) reveal that the ASP-based approach
can successfully compete with approaches based on integer linear programming
and constraint programming.

A number of techniques (e.g., greedy and branch-and-bound algorithms, re-
duction to SAT, integer programming, stochastic local search) have been ap-
plied to address the problem of haplotype inference by pure parsimony, in its



initial formulation as well as in a number of variants and refinements, such as
[12, 18, 24, 40, 64, 65, 99, 115, 118]. Among the various proposals appearing in
literature, we mention the rule-based method proposed by Clark [22], which in
its general form suffers from the NP-hardness of the problem.

Several alternative principles, different from parsimony, have also been ex-
plored. One of them is called the infinite sites model. It postulates that, during
the evolution of a population, a mutation that results in a SNP occurs only
once in the history; this reflects the Dollo and Camin-Sokal principles discussed
in the previous section. Hence, all individuals sharing a specific allele must be
descendants of a single ancestor.

Methods relying on maximum likelihood criteria assume that the probability
of observing a genotype is strictly related to the probability of observing its
constituent haplotypes. Hence, these methods estimate the probability of (each
specific set H of) haplotypes from observed genotypes frequencies in the real
population. These methods seek the most probable solution.

Other methods make hypotheses on the historical evolution of the charac-
ters in a population. The notion of perfect phylogeny is introduced to represent
such evolution as a rooted tree (coalescent model, see [68]). The tree-structure
not only imposes constraints on the candidate solutions, but also reduces the
computational complexity of the problem.

For a much detailed treatment of these and other methods, we refer the
interested reader to [72, 70] and to the references therein.

5 RNA secondary structure prediction

In this chapter, we focus on the prediction of the secondary structure arrange-
ment for RNA strands. We provide a model for a simplified version of the problem
and we show an elegant ASP encoding.

As anticipated in Section 2, an RNA sequence S = s1 · · · sn is a string of
symbols from {A,C,G,U}. The sequence can fold in the space, so that pairs
of bases can physically interact. The secondary structure can be described by a
set of pairs of interacting bases. In Figure 7, we show an example of an RNA
sequence and a set of pairs of bases (denoted by solid lines). In general, the
energetic evaluation of these interactions can be computed in a precise way, re-
gardless of the overall three dimensional arrangement of the sequence. Therefore,
it is possible to compute the best secondary structure while ignoring the actual
folding in space. This gives rise to specific prediction algorithms that are much
more reliable when compared to the prediction tools for amino acid sequences
(see also Section 6).

In order to identify the most probable secondary structure, various energetic
models have been studied and efficient methods for its estimation have been pro-
posed. In the following, we present two simple approximations of energy func-
tions. The first one is based of the simplest approximation and maximizes the
number of favorable pairings (i.e., A–U , C–G, and U–G). A more refined energy
function scores the frequency of the pairs.
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Fig. 7. An example of pairings on a sequence of length 14. Solid lines between i and
j represent a pair between corresponding si and sj . The addition of the dashed line
introduces a pseudo-knot

Fig. 8. Example of 2D hypothetical arrangement of secondary structure

Figure 8 shows an hypothetical 2D pairing of secondary structure associated
to Figure 7 without the dashed pair. The first section (bases 1–7) forms a ladder
with a bulge, in this case containing only one base. This structure is referred to
as an hairpin or stem loop, which is rather stable and it can roll into a double
helix shape in the actual three dimensional space, just as for a DNA paired
double strand.3

5.1 Modeling

Given S = s1 · · · sn with si ∈ A,C,G,U and a partial injective function P :
{1, . . . , n} → {1, . . . , n} such that

– P (i) = j ⇔ P (j) = i and
– P (i) = j ⇒ (si, sj) ∈ {(A,U), (U,A), (C,G), (G,C), (U,G), (G,U)}

For the sake of simplicity, we will represent P as a the set of pairs {(i, j) |P (i) =
j}. P represents a possible secondary structure. The RNA secondary structure

3 Figure 8 was produced using the Varna Applet http://varna.lri.fr/.



prediction problem is that of finding, among all such functions P , the one that
minimizes a given energy function. We experiment with two simple energy func-
tions:

E1 = −|P |
E2 = c1(n− |P |) + c2|AU − 0.35|P | |+ c3|CG− 0.53|P | |

where AU (CG) is the number of contacts of bases A–U (C–G, respectively)
and c1, c2, c3 are some suitable weights.

The energy function E1 was proposed by Nussinov [90] and represents the
simplest approximation of the problem. It maximizes the number of admissible
pairs, and thus promotes the tightest packing of the structure.

The energy function E2 is an adaptation from [76, 9] and promotes a dis-
tribution of pair types as similar as possible to a typical statistical distribution
retrieved from experimental observations.

5.2 ASP Encoding

Let us explore the encoding of this problem in ASP. The sequence S = s1 · · · sn
is provided as a set of n facts of the form seq(i, si); for example:

seq(1,a). seq(2,g). seq(3,u). seq(4,c). seq(5,c). seq(6,a).

The main program models the predicate pairing, which represents the par-
tial function P and contains pairs of indices corresponding to interacting bases.

%% domain predicates

(1) sequence_index(X) :- seq(X,_).

(2) sequence_base(B) :- seq(_,B).

%%% Definition of the pairing function

(3) 0 {pairing(X,Y):sequence_index(Y)} 1 :- sequence_index(X).

%% the pairing is injective and symmetric

(4) :-sequence_index(X1;X2;Y),X1<X2,pairing(X1,Y),pairing(X2,Y).

(5) pairing(B,A):- sequence_index(A;B),pairing(A,B).

%% wrong associations

(6) wrong(X,X):- sequence_base(X).

(7) wrong(a,c). wrong(a,g). wrong(c,u).

(8) :-wrong(B1,B2),seq(X1,B1),seq(X2,B2),pairing(X1,X2).

%% each position can have at most one pairing

%% a base cannot match with itself and the successive

(9) :-sequence_index(X1), pairing(X1,X1).

(10) :-sequence_index(X1;X2), X1=X2+1, pairing(X1,X2).

%% Optional constraint: no pseudo-knots

(11) :- sequence_index(X1;X2;X3;X4), X1<X3,X3<X2,X2<X4,

pairing(X1,X2),pairing(X3,X4).

%% Nussinov Energy E1

(12) contacts(C):- C = #count{ pairing(A,B) }.

(13) #maximize[contacts(C)=C].



The clauses in lines (1)–(2) extract domain knowledge from the input. Line
(3) defines the partial function pairing, which is forced to be injective, by
the constraint in line (4), and symmetric, by the clause in line (5). Lines (6)–(8)
discard non-admissible pairs, according to the definitions in the modeling section.
The constraints in line (9) and (10) forbid the pairing of a base with itself and
its neighbors. The constraint in line (11) enforces the absence of pseudo-knots
(see Sect. 5.3). If this constraint is removed, then the program will model the
NP-complete version of the problem. The clauses in lines (12) and (13) collect
and minimize the number of contacts, respectively.

Let us briefly show how to encode the energy model E2. Line (13′) replaces
the optimization instruction (13) by asking for a minimal energy. The clauses
in lines (14)–(16) define the count of the total number of AU and CG pairs in
the sequence, respectively. The energy predicate, in line (18), defines the energy
function E2. We assign here c1 = c2 = c3 = 1. Note that the first coefficient
and lines (22)–(23) are multiplied by 100 in order to scale from floating point to
integer numbers.

(13’) #maximize[energy(E)=E].

(14) total(N) :- N=#count{ seq(X,Y)}.

(15) au(N) :- N=#count{pairing(A,B):seq(A,a):seq(B,u)}.

(16) cg(N) :- N=#count{pairing(A,B):seq(A,c):seq(B,g)}.

(18) energy(E) :- C1=1, C2=1, C3=1,

total(N), contacts(C), au(AU), cg(CG),

E = C1 * (N-C/2) + C2 * #abs(100*AU - 35*C) +

C3 * #abs(100*CG - 53*C).

Let us observe that the latter version of the solution encounters significant
grounding problems, even for average size inputs.

5.3 Related work

In the literature, RNA secondary structure prediction has been addressed by a
large number of proposals, presenting different algorithms and various energy
functions. Starting from the seminal work by Tinoco [110], where propensity
of forming helices was addressed, other popular methods include the one by
Jacobson and Nussinov [90], introduced more than 30 years ago. It promotes
the maximal number of admissible pairs in the sequence. This approach can be
addressed by a polynomial dynamic programming approach for a restricted class
of solutions (in absence of pseudo-knots, see the complexity notes below).

More refined energy functions have been proposed, with the specific goal
to better estimate hairpin loops. The Zucker’s algorithm [119] proposes a more
precise estimate of stacking pairs forming a hairpin loop, as well as contributions
for opening and closing a loop. The computational complexity of the solution is
polynomial in absence of pseudo-knots, and non-logic programming techniques,
i.e., dynamic programming, have been proposed. The original algorithm proposes
an energy minimization approach.



Other energy functions have been proposed as the result of probabilistic
analyses. In particular, the mean distribution of base pairs found in actual RNA
secondary structures has been used as the target of the secondary structure
prediction. The most favorable structure is the one that best approximates such
distribution [76, 9].

In order to improve the structural results, Sankoff proposed a simultaneous
alignment and folding approach, which goes beyond the scope of this section [96].

In the general case, the decisional version of the problem is NP-complete—
see [84] for the original proof. The main idea is to reduce a 3-SAT formula into
a particular sequence such that there exists a specific number of contacts if
and only if the original formula is satisfiable. An interesting polynomial class of
problems has been characterized by the absence of pseudo-knots (see dashed pair
drawn in Figure 7). A pseudo-knot is encountered when the following property
holds: for two pairings (i, j) and (`, k) in P ,

i < ` < j ⇒ j < k ∨ k < i

The work in [8] provides examples of energy functions for general structures with
pseudo-knots. Moreover, a constraint propagation approach for alignment and
folding in the presence of pseudo-knots has been presented in [37]. For pseudo-
knot free structures, dynamic programming algorithms can be used with a time
complexity ranging from O(n2) to O(n4), depending on the energy function
being considered, while space complexity ranges from O(n) to O(n2) .

6 Protein Structure Prediction

The problem we introduce here is a simplification of the protein structure pre-
diction (PSP) problem. In particular, we consider two levels of simplification:

– Protein model: we consider only one atom per amino acid. Moreover, we
partition the 20 amino acids in two families: h (hydropic) and p (polar);

– Spatial model: we focus exclusively on a simple 2D discrete lattice represen-
tation of the space.

We provide some more details on the full version of the problem and to (some)
approaches for dealing with it in Subsection 6.3.

6.1 Modeling

We refer to such simplified version of the problem as the 2DHP-PSP. The prob-
lem can be formulated in a simple way as follows. The input is a list of amino
acids S = s1 · · · sn, where si ∈ {h, p}. Imagine S as a pearl necklace, where the
sis are the pearls, while the distance between si and si+1 is constant. This string
of pearls lays down on a large 2D matrix, where the size of the square is exactly
the distance among pearls—for the sake of simplicity, we will assume such dis-
tance to be 1—with the further constraints that si must occupy the intersection



of two lines, and that no two distinct si and sj occupy the same point. We call
this necklace placement a folding. In a given folding, if a pair of amino acids si
and sj are at distance 1, we say that they are in contact. We are interested in
contacts between pairs of amino acids of type h (h-h-contacts). The 2DHP-PSP
is the problem of finding a folding that maximizes the number of h-h-contacts.
The decision version of the problem:

Given a sequence S and a number k, is there a folding with at least k
h-h-contacts?

has been shown to be NP-complete in [29].

Fig. 9. White circles denote p amino acids, while dark circles are h amino acids. Two
foldings for S = phphpphp. Left: one h-h contact. Right: two h-h contacts.

We model the 2DHP-PSP in a mathematical way as follows. Given a list
S = s1 · · · sn, with si ∈ {h, p}, a folding is a function ω : {1, . . . , n} −→ N2 such
that

1. ∀i ∈ {1, . . . , n− 1} next(ω(i), ω(i+ 1)) and
2. ∀i, j ∈ {1, . . . , n} (i 6= j → ω(i) 6= ω(j))

where next(〈X1, Y1〉, 〈X2, Y2〉) holds if and only if |X1−X2|+ |Y1−Y2| = 1. The
2DHP-PSP is the problem of finding the folding that minimizes the following
energy function:

E(S, ω) =
∑

1 ≤ i ≤ n − 2
i + 2 ≤ j ≤ n

Pot(si, sj) · next(ω(i), ω(j))

where Pot(p, p) = Pot(h, p) = Pot(p, h) = 0 and Pot(h, h) = −1.4

Without loss of generality, we can consider only foldings within [1..2n] ×
[1..2n]; moreover, to remove some symmetries in the solution space, we can set
ω(1) = 〈n, n〉 and ω(2) = 〈n, n+ 1〉,

4 With a slight abuse of notation, we assume next to return 1 when it holds and 0
when it does not.



Contiguous occurrences of h in the input sequence S (namely, when si =
si+1 = h) contribute in the same way to the energy associated to each folding
and, thus, they are not considered in the objective function.

An easy observation (that unfortunately cannot be “lifted” to the general
PSP formulation) is that si and sj can be in contact only if j − i is odd.

6.2 ASP Encoding

The essential part of the ASP encoding of this problem is presented in [43].
A specific instance S = s1, . . . , sn of the problem is represented by a set of n
facts of the kind prot(i, si). For instance, the protein phphpphp of Figure 9 is
described as:

prot(1,p). prot(2,h). prot(3,p). prot(4,h).

prot(5,p). prot(6,p). prot(7,h). prot(8,p).

The ASP code used in the encoding is reported below:

% domains

(1) size(N) :- N = #count { prot(I,J) }.

(2) board(1..2*N) :- size(N).

(3) range(X,Y) :- size(N), board(X;Y), #abs(X-N)+#abs(Y-N) < N.

% set the first two positions

(4) sol(1,N,N) :- size(N).

(5) sol(2,N,N+1) :- size(N).

(6) 1 { sol(I,X,Y) : range(X,Y) } 1 :- prot(I,Amino).

% add geometrical constraints

(7) :- prot(I1,A1), prot(I2,A2), I1<I2,

sol(I1,X,Y), sol(I2,X,Y), range(X,Y).

(8) :- prot(I1,A1), prot(I2,A2), I2>1,

I1==I2-1, not next(I1,I2).

(9) next(I1,I2) :- prot(I1,A1), prot(I2,A2), I1<I2,

sol(I1,X1,Y1), sol(I2,X2,Y2),

range(X1,Y1), range(X2,Y2),

1==#abs(Y1-Y2)+#abs(X2-X1).

% Count the number of h-h energy_pairs and minimize it

(10) energy_pair(I1,I2) :- prot(I1,h), prot(I2,h),

next(I1,I2), I1+2<I2, 1==(I2-I1) #mod 2.

(11) energy_value(N) :- N = #count{ energy_pair(I1,I2) }.

(12) #maximize[energy_value(N)=N].

Rules (1)–(3), together with the predicate prot, define the domains of the vari-
ables to be used later. Precisely, rule (2) and (3) state the admissible values for
x and y coordinates: it is easy to see that the Manhattan distance w.r.t. the ini-
tial point (set in rule (4)) is less than N . We aim at defining the solution (sol)
predicate that states, for each amino acid 1, . . . , n its spatial position. Rules (4)
and (5) fix the positions of the two initial amino acids. Rule (6) states that each
amino acid occupies exactly one position. The ASP-constraints (7) and (8) state
that there are no self-loops and that two contiguous amino acids must satisfy



the next property. Rule (9) defines the next relation, also including the odd
property of the lattice. The objective function is defined by Rule (10) and (11),
which determines the energy contribution of the amino acids, and rule (12), that
searches for answer sets maximizing the energy.

6.3 Related work

The literature on the protein structure prediction problem is extensive (e.g., see
some reviews [87, 57, 34]). We just focus on some approaches based on logic
and/or constraint programming. The 2DHP version of the problem is just a toy
model that, however, can be used to understand the difficulty of combining a
self-avoiding-walk with a non linear energy function (see running times in the
previous section). The HP function was introduced by Dill [41] to model the fact
that polar (p) amino-acids tend to stay outside (in contact with water) and, as
a consequence, hydrophobic (h) amino-acids tend to stay in contact inside the
protein.

A 3D lattice model for the HP problem (FCC) was introduced by Backofen
and Will [3, 4]; using clever symmetry breaking results and a geometric notion
of allowed cores, they are able to find the best folding for proteins of length 200
and more. In [32] the authors generalizes their approach using a Prolog encoding
with a more precise contact energy function. An ad-hoc constraint solver for
that modeling was then developed [35]. In [33] the same authors consider an
orthogonal view of the same problem, namely the approach is that of assembly
admissible fragments of the protein. The notion of a discrete lattice is no longer
needed and results are more realistic, even remaining in a discrete world (the
number of allowed fragments for each subset of a protein is finite). An ad-hoc
constraint solver for that modeling has been described in [17].

7 Systems Biology

A cell can be considered as a complex system composed of different interacting
components. Such components can be small molecules (e.g., water, amino acids,
nucleotides, etc), DNA, RNA, and proteins. The interactions among these ele-
ments determine the diverse cellular functions and can be situated and analyzed
at different levels/stages of the process that, starting from DNA replication,
ends with protein synthesis. Each of these stages are usually modeled by means
of some kind of network. At the DNA level, transcription factors control the
transcription of genes in mRNA synthesis (transcriptional regulatory network).
This affects the activities of genes through a so-called gene regulatory network
(notice that genes, in turn, control the transcription factors). At the protein level
several proteins can interact and affect the products of the transcription step and
form protein complexes. These interactions are modeled by protein interaction
network. Biochemical reactions occurring in the cell and involving metabolites
(such as enzymes, substrates, etc.) constitute the metabolic network. Signaling
networks are introduced to model the complex processes that took place in a



cell in order to receive different signals from the cellular environment and, pos-
sibly, from other cells. Figure 10 intuitively illustrates these networks and their
relationships.
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Fig. 10. Various kinds of network models used to represent, at different granularity
levels, the interactions between molecules in a cellular system.

A typical problem in system biology consists of developing a network model
by combining existing biological knowledge. This model has to be validated with
respect to experimental data. Often, because of incompleteness in the biological
knowledge and partial unreliability of experiments’ outcome, the model has to
be checked for consistency, modified, repaired, or extended. On the other hand,
analysis of the model may give hints on how to design new experiments.

In this section we describe some of the declarative approaches aimed at au-
tomating specific steps of the process of model definition and refinement.

7.1 Gene Regulatory Networks

7.1.1 Modeling
A gene regulatory network is a directed graph having genes as nodes and their
relationships as edges. The most commonly used model to relate the concen-
trations of network constituents (genes, metabolites, proteins, etc.) and their
evolution is derived from (systems of) ordinary differential equations. In many
cases, the incompleteness of information about biochemical reactions makes the
task of defining such equations hard. Moreover, in a simplified setting, one may
be interested in abstracting from quantitative aspects and introducing a qual-
itative model. Such model should focus on the controlling relationships among



genes/nodes of the network, namely, activations and inhibitions of genes’ expres-
sion as effect of other genes’ expressions.

Le

Li

G

LacY

LacZ A

LacI cAMP-CRP

Fig. 11. An influence graph modeling lactose operon in Escherichia coli

One of the simpler proposed models makes use of the so-called influence
graph. In such network model, the edges are labeled either by + or by −, to
represent the positive, resp. negative, influence between constituents. Formally,
an influence graph is a directed graph G = (N,E, σ), where N is a set of nodes,
E is a set of edges, and σ : E → {+,−} is a (possibly partial) labeling of the
edges.

Graphically, the edges labeled + are represented as arrows while those la-
beled − have a tee head. Figure 11 describes a simplified influence graph for
the lactose operon in Escherichia coli [61]. In this graph, for example, the node
Le is not regulated by other constituents, hence it is considered as an input of
the system. By increasing or decreasing the levels of input constituents one can
observe how the system evolves as result of reciprocal activations and inhibitions
of nodes. This represents a (simplified) simulation of the modeled biological sys-
tem. Since each node may be either active or inhibited, there exists only a finite
number of possible states of the network. Thus, such simulation must end in a
steady state or, otherwise, enter a cycle of states. Viewed from the qualitative
perspective, at a higher abstraction level, steady states can be considered as
counterparts for the solutions of the system of differential equations.

In reasoning on biological networks represented as influence graphs, one often
adopts the so-called Sign Consistency Model. After a model has been designed
and its steady state(s) are determined (corresponding to different input con-
figurations), we may want to verify if its behavior reflects the outcome of real
experiments. At this abstraction level, such outcome is specified in terms of a
node labeling µ that labels constituents by + (resp., −), depending on the vari-



ations of their concentrations, as exhibited by experimental data. Consistency
of the model with respect of the experimental data is formalized a follows.

Let G = (N,E, σ) be an influence graph and µ : N → {+,−} a (partial)
node labeling. Then, G and µ are consistent if there are extensions σ′ of σ
and µ′ of µ such that, for each non-input node n ∈ N , there is an edge e =
(m,n) ∈ E such that σ′(e) ◦ µ′(m) = µ′(n), where the usual rule for signs,
namely + ◦+ = − ◦ − = + and − ◦+ = + ◦ − = −, is adopted.

Even in this simplified setting, the problem of establishing consistency of a
model w.r.t. a data set is not trivial. In [114], for instance, it is shown that in
presence of incomplete information the decision problem is NP-hard.

In case inconsistency is detected, this can be caused by missing or inaccu-
rate knowledge involved in the design of the network and by the presence of
partially unreliable data. In such a situation, one may ask whether it is possible
to reconcile model and data. A possibility consists in applying some changes in
the network model or in the data (or both). Changing the data is an attempt
in singling out those portions of the experimental outcome to be considered as
unreliable. A modification of the network should yield a more refined biological
model. Finding a set of such repairing operations consists in solving the re-
pair problem. This is usually solved with respect to a collection of experimental
profiles—observations or experimental evidences—represented as a collection of
different node labeling.

Considering a set of experimental profiles, a typical repair operation consists
of: 1) introducing a new edge in the network; 2) flipping the label of an edge;
3) considering a node to be an input node in all experimental profiles; 4) con-
sidering a node to be an input node in a specific profile; 5) flipping the label for
a node in a specific profile. 1) and 2) correct incompleteness and inaccuracy of
the model; 3) indicates that for that node some form of regulation is missing in
the model; 4) and 5) revise the experimental observations.

We are interested in applying a minimal number of repair operations. Thus
we are looking for repairs that are minimal with respect to some criteria. Two
possibilities explored in literature [59], are subset-minimality and cardinality-
minimality. As noted in [59], both choices are not computationally trivial, since
evaluating subset-minimality and cardinality-minimality involves solving prob-
lems that are, in general, in ΣP

2 and in ∆P
2 , respectively.

It is possible that many repairs exist for reconciling the same inconsistency
between a network and a set of profiles. We may be interested in detecting those
parts in the edge/node labeling that are common to all these solutions. In other
words, we are interested in determining the consequences of each minimal repair.
This consists of solving the prediction problem.

7.1.2 ASP Encoding
The following encoding is inspired from [61, 59] but it avoids the use of disjunc-
tive heads and it deals with consistency detection and with a simple notion of
repairing.



The program aims to compute the predicates label vertex and label edges

(although typically edges are already labeled). The input of the problem is given
through a set of facts of the following kind: vertex(Vertex Name), edges(From
Vertex, To Vertex), input(vertex Name)–for input vertices, and a set of
observation for nodes and edges of the form observed(Vertex name, Sign)

(for nodes) and observed(From Vertex, To Vertex, Sign) (for edges), where
Sign is either plus or minus.

% domain predicates

(1) sign(minus). sign(plus).

(2) opposite(minus,plus). opposite(plus,minus).

% Non deterministic labels for nodes and edges

(3) 1 {label_vertex(V,S): sign(S)} 1 :- vertex(V).

(4) 1 {label_edge(U,V,S): sign(S)} 1 :- edge(U,V).

% choice for reversing an edge

(5) {wrong(U,V)} :- edge(U,V).

% labeling nodes consistent with observation

(6) label_vertex(V,S) :- observed(V,S).

% labeling edges consistent with observation, if possible

(7) label_edge(U,V,S) :- wrong(U,V), observed(U,V,T), opposite(S,T).

(8) label_edge(U,V,S) :- not wrong(U,V), observed(U,V,S).

% Rules of signs

(9) receive(V, plus) :- edge(U,V), sign(S),

label_edge(U, V, S), label_vertex(U, S).

(10) receive(V, minus) :- edge(U,V), opposite(S,T),

label_edge(U, V, S), label_vertex(U, T).

% All vertices (but inputs) must be labeled in justified way

(11) :- label_vertex(V, S), not receive(V, S), not input(V).

% Minimize edge reversing to guarantee consistency

(12) edges_reversed(N) :- N = #count{ wrong(U,V) }.

(13) #minimize [edges_reversed(N)=N].

After defining the domain predicate sign in line (1), and the predicate oppo-
site between signs, the mutual exclusion between plus and minus for vertices and
edges is stated in lines (3) and (4). The choice for the predicate wrong stating,
intuitively, that an edge should be reversed is added in line (5). The labeling we
are looking for should be consistent with known observations. In particular, node
labeling is required to be consistent in line (6) and the edge labeling is consistent
if the edge is not wrong, otherwise the complementary value is chosen (lines (7)
and (8)). Rules of signs propagation are stated in lines (9) and (10), using the
auxiliary predicate receive. Then, in line (11) it is stated that the labeling of
the non-input vertex must be justified by the predicate receive, namely by the
rule of signs. Lines (12) and (13) are inserted for looking for the answer set with
a minimum number of wrong edges. If edges reversed(0) is in the result, then
the network is already consistent.



7.2 Metabolic Networks

7.2.1 Modeling
Large amounts of data are made available through experiments, making possible
the study of the dynamic metabolic behavior of living cells (or systems of cells)
in response to perturbations and stimuli coming from their surrounding environ-
ment. This is usually done by analyzing metabolic networks. In such networks,
the nodes represent the metabolites while the edges represent the reactions. A
metabolic network describes a collection of metabolite components together with
a functional readout of the cellular state. The modeling and the reconstruction of
biochemical reaction pathways/networks are far from being easy tasks, because
of the complexity of the molecules and the reactions that may take place. This
fact calls for sophisticated and refined computational techniques for reconstruct-
ing and simulating metabolic networks.

Several formal techniques and approaches have been adopted to model and
reason about metabolic networks. Among them, we find Petri nets, Flux balance
analysis, and Process calculi (see [20], and the references therein, for further
details).

In the rest of this section we describe a qualitative approach based on ASP
to study this class of problems. We rely on the notion of metabolic network
borrowed from [89, 97, 25]. Intuitively speaking, a metabolic network models
situations where a reaction can only occur if all of its substrates are available
as nutrients or can be produced by other reactions. Starting from some initially
given nutrients, called seeds, the network is expanded by adding all of the enabled
reactions together with their products. Such a process iterates until no further
reactions can occur. The set of metabolites in the expanded resulting network
is called the scope of the given seeds. It represents all the metabolites that can
be, potentially, synthesized from the seeds by the given network.

We adopt the following definition: a metabolic network is a directed bipartite
graph G = (R ∪M,E) where R and M are sets of nodes representing reactions
and metabolites, respectively, and E ⊆ (R×M) ∪ (M ×R).

Given an edge (m, r) ∈ E, the metabolite m ∈ M is called reactant of the
reaction r ∈ R. Similarly, for an edge (r,m) ∈ E, the metabolite m ∈ M is
called product of the reaction r. We say that a reaction r is reachable from a set
of metabolites S if S contains all the reactants of r. Moreover, we say that a
metabolite m is reachable from a set of metabolites S if either m ∈ S or m is a
product of some reaction r reachable from S. We define the scope of a set S of
metabolites in the network G (briefly, ΣG(S)) to be the set of metabolites that
are (transitively) reachable from S.

The authors of [97, 25] propose ASP-based solutions for two specific reasoning
tasks on metabolic networks: metabolic network completion and inverse scope
problem.

The metabolic network completion problem can be stated as follows. Let us
consider a metabolic network G = (R ∪M,E), two sets S, T ⊆ M of seed and
target metabolites, and a reference metabolic network (R′∪M ′, E′). We wish to



find a set of reactions R′′ ⊆ R′ \R such that T ⊆ ΣG(S), where:

G =
(
(R ∪R′′) ∪ (M ∪M ′′), E ∪ E′′

)
M ′′ = {m ∈M ′ | r ∈ R′′ and m is a reactant or a product of r}
E′′ = {(m, r) ∈ E′ | r ∈ R′′ and m is a reactant of r} ∪

{(r,m) ∈ E′ | r ∈ R′′ and m is a product of r}

The set R′′ is the completion of (R ∪M,E) from (R′ ∪M ′, E′) w.r.t. S, T .

Fig. 12. A metabolic network

For instance, let us consider the network in Figure 12. It represents the
reference network (R′ ∪M ′, E′), while G is its subgraph where R = {r3, r4, r6}
(the dark nodes), M = M ′ and E′ is the subset of edges that concerns nodes
in R. If S = {m1,m2} and T = {m5,m7}, then further reactions should be
used (i.e., inserted in R′′). A solution with a minimal size of new reactions is
R′′ = {r1}.

Variants of this problem impose minimality requirements on the set R′′, typ-
ically asking for subset-minimal or cardinality-minimal solutions. Other variants
minimize the production of metabolites occurring in a set of “forbidden” prod-
ucts. Moreover optimality can be imposed on the distance (i.e., path length)
between seeds and scope.

The inverse scope problem can be formulated as follows. Given a metabolic
network G = (R ∪M,E) and a set T ⊆ M of target metabolites, find a set of
seed metabolites S ⊆ M such that T ⊆ ΣG(S). Also in this case minimality
requirements can be imposed to obtain optimized versions of the problem, as
well as specification of “forbidden” products.

As regards computational complexity, it can be shown that, in general, the
problem of metabolic network completion, as well as the inverse scope problem
and other related problems, are NP-hard [89, 88].

7.2.2 ASP Encoding
We report here a simplified encoding of the problem of metabolic network com-



pletion. The interested reader can refer to [97] for a description of variants of
this encoding as well as for the ASP formulation of the inverse scope problem.

The instance of the problem is described by the specification of two networks.
This is done using facts of the forms:

• draft(Net) to identify the network named Net as the network G.

• reaction(R,Net) states that the reaction node is in G;

• Other reactions of G′ are defined by reaction(R,a) (a stands for “all”;
w.l.o.g. let us assume that the network name Net is not a, and that it is
different from the symbol x, as well).

• Edges are represented by facts of the form reactant(M,R) and product(M,R)

to specify the topology of the network.

• seed(S) and target(T) specify seeds and targets.

For instance, considering again the network in Figure 12, one can state draft(d)
to identify G, along with the facts

reaction(r1, a). reaction(r2, a). reaction(r3, d). ...

The graph is given by facts of the form:

reactant(m1, r1). reactant(m2, r2). ...

product(m3, r1). product(m3, r2). ...

Finally, seeds and target are defined as

seed(m1). seed(m2). target(m5). target(m7).

The following code implements the solution to the the problem of metabolic
network completion.

%%% Type of reaction. d: graph G, a: all, x: reactions added

(1) type(Net) :- draft(Net).

(2) type(a). type(x).

%%% Extended graph.

(3) reaction(R,x) :- reaction(R,Net), draft(Net).

(4) { reaction(R,x) } :- reaction(R,a).

%%% reachability predicate

(5) scope(M, T) :- seed(M), type(T).

(6) scope(M, T) :- type(T), product(M,R), reaction(R,T),

scope(M2,T) : reactant(M2,R).

(7) :- target(M), not scope(M,x).

%%% new reactions and their minimization

(8) new(R) :- reaction(R,x), draft(Net), not reaction(R,Net).

(9) reactions(S) :- S = #count{ new(R) }.

(10) #minimize[reactions(S)=S].

In the above code, lines (1)–(2) define the three types of reactions, d stands for
the network G, a stands for the reference network, and x will denote the reactions
of the intermediate network G′′ we are looking for. Lines (3)–(4) define non-
deterministically which reaction can be considered by the intermediate network
G′′. All reactions of G are included, while those in G′ \G can be considered or



not. Lines (5) and (6) define the reachability relation. In particular, let us observe
the use of the conditional literal scope(M2,T) : reactant(M2,R) in the body of
the rule of line (6). It is a shorthand for scope(m1, T ), . . . , scope(mn, T ) where
m1, . . . ,mn are all the metabolites that are reactants of the reaction R active in
the network identified by T . This kind of syntactic extension to ASP is replaced
by the proper list of usual literals by the grounding stage. The constraint in
line (7) imposes that all targets must be obtained in the extended network.
Finally, lines (8)–(10) ask for a cardinality-minimal set of new reactions.

7.3 Related work

It is practically impossible to compile here a comprehensive bibliography on
Systems Biology. We refer the reader to [44], which provides a general overview
of the field and an extensive bibliography, and to [20] for a network-oriented
perspective. Let us focus on the declarative approaches developed in the subfields
of Systems Biology treated in this chapter.

In this section, we described the approach relying on the notion of Influence
Graph and the Sign Consistency Model for gene regulatory networks. Other
methods have been studied; for instance, [28, 27, 19, 26, 58] adopt, and in some
cases extend, the logical formalism introduced in [104, 105, 106]. Notions of net-
work, such as regulatory graphs and interaction graphs [54], are defined similarly
to influence graphs, but by admitting numerical labeling or activation/inhibition
thresholds. Implementations have also been developed, such as SysBiOX [27] and
Pint [58], exploiting computational logic solvers, mainly based on SAT, ASP,
or CSP.

Boolean networks have been also used, for instance in [71], to declaratively
tackle the learning problem for biological network models. The proposal ex-
ploits an ASP-solver as reasoning engine. Similarly, [54] relies on ASP to model
and reason about protein interactions, while [93] integrates numerical weights
in Boolean networks in order to introduce a notion of preference among solu-
tions. Another extension of Boolean networks is used in [55, 56] to develop an
ASP-based system to model regulatory networks with meta-interactions. The
implementations of a collection of deductive tasks for reasoning on biological
networks, developed by the authors of [71, 45, 59, 61] (including those presented
in this section), are described in [60].

The use of Action Description Languages to solve different computationally
hard problems in Systems Biology has been explored in [112, 111, 6, 7, 113]. The
authors also realized a tool, named BioSigNet-RR, exploiting such ideas. Similar
approaches to signaling, metabolic, and regulation networks have been proposed
in [46, 47], among others, by introducing the ADL CTAID and the system BioC.

In [16] a software environment for modeling biochemical systems (BIOCHAM)
has been described. It allows the analysis and simulation of Boolean, kinetic, and
stochastic models and the formalization of biological properties in temporal logic.
Parts of the tool are implemented in logic programming.



8 Conclusions

This chapter reviews some classical problems that arise in Bioinformatics, namely
Phylogenetics, Haplotype, RNA secondary structure prediction, protein struc-
ture prediction, and systems biology. The chapter shows how logic programming
can be employed to model these problems by describing the properties of the sys-
tem, rather than the process of computing the problem’s solutions. The problems
have been modeled by means of Answer Set Programming, a logic programming
language that allows concise and versatile programming style. The reader is
guided into the modeling process and the intuitive encoding into ASP. The rela-
tively short encodings are fully functional and they can be tested in conjunction
with input reported in the Appendix.
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A Instances

For readers’ convenience we report here some instances on which run the ASP
encodings presented in the paper (just cut & paste from the pdf—line numbers
should be removed from ASP codes). Expected running time will depend on
the machine of course, but instances are chosen to run in at most a couple of
minutes.

A.1 Phylogenetic Reconstruction

We report here the instance used in Figure 4 and other two simple instances:

– taxa(1..5).

% characters and values on leaves (function f)

f(1,coelom,0). f(2,coelom,0). f(3,coelom,0). f(4,coelom,1). f(5,coelom,1).

f(1,dark,1). f(2,dark,0). f(3,dark,0). f(4,dark,0). f(5,dark,1).

– taxa(1..5).

f(1,a,1). f(2,a,0). f(3,a,0). f(4,a,0). f(5,a,1).

f(1,b,0). f(2,b,1). f(3,b,1). f(4,b,1). f(5,b,0).

f(1,c,1). f(2,c,1). f(3,c,0). f(4,c,0). f(5,c,1).

f(1,d,1). f(2,d,1). f(3,d,1). f(4,d,0). f(5,d,0).

– From http://evolution.berkeley.edu/evolibrary/article/phylogenetics_
07

taxa(1..7).

% 1= Sharks and Relatives

f(1,vertebrate,1). f(1,skeleton,0). f(1,fourlimbs,0).

f(1,amnioegg,0). f(1,hair,0). f(1,twopostorbital,0).

% 2 = Ray-finned fishes

f(2,vertebrate,1). f(2,skeleton,1). f(2,fourlimbs,0).

f(2,amnioegg,0). f(2,hair,0). f(2,twopostorbital,0).

% 3 = Amphibians

f(3,vertebrate,1). f(3,skeleton,1). f(3,fourlimbs,1).

f(3,amnioegg,0). f(3,hair,0). f(3,twopostorbital,0).

% 4 = Primates

f(4,vertebrate,1). f(4,skeleton,1). f(4,fourlimbs,1).

f(4,amnioegg,1). f(4,hair,1). f(4,twopostorbital,0).

% 5 = Rodents and rabbits

f(5,vertebrate,1). f(5,skeleton,1). f(5,fourlimbs,1).

f(5,amnioegg,1). f(5,hair,1). f(5,twopostorbital,0).

% 6 = Crocodiles and relatives

f(6,vertebrate,1). f(6,skeleton,1). f(6,fourlimbs,1).

f(6,amnioegg,1). f(6,hair,0). f(6,twopostorbital,1).

% 7 = Dinosaurs and birds

f(7,vertebrate,1). f(7,skeleton,1). f(7,fourlimbs,1).

f(7,amnioegg,1). f(7,hair,0). f(7,twopostorbital,1).



A.2 Haplotype Inference

We just report one instance with |G| = 20 and n = 8. To test other instances
just commute turn 2 into 0 or 1 or viceversa.

g(1,1,2). g(1,2,1). g(1,3,1). g(1,4,0). g(1,5,2). g(1,6,0). g(1,7,2). g(1,8,0).
g(2,1,2). g(2,2,0). g(2,3,0). g(2,4,2). g(2,5,1). g(2,6,1). g(2,7,0). g(2,8,0).
g(3,1,2). g(3,2,0). g(3,3,1). g(3,4,2). g(3,5,2). g(3,6,0). g(3,7,2). g(3,8,0).
g(4,1,2). g(4,2,2). g(4,3,2). g(4,4,2). g(4,5,1). g(4,6,2). g(4,7,2). g(4,8,0).
g(5,1,1). g(5,2,2). g(5,3,0). g(5,4,1). g(5,5,0). g(5,6,0). g(5,7,1). g(5,8,0).
g(6,1,1). g(6,2,2). g(6,3,0). g(6,4,2). g(6,5,2). g(6,6,0). g(6,7,1). g(6,8,2).
g(7,1,1). g(7,2,2). g(7,3,2). g(7,4,2). g(7,5,1). g(7,6,2). g(7,7,2). g(7,8,2).
g(8,1,1). g(8,2,1). g(8,3,2). g(8,4,2). g(8,5,1). g(8,6,2). g(8,7,2). g(8,8,2).
g(9,1,1). g(9,2,1). g(9,3,2). g(9,4,1). g(9,5,1). g(9,6,2). g(9,7,2). g(9,8,1).
g(10,1,1). g(10,2,0). g(10,3,2). g(10,4,2). g(10,5,1). g(10,6,0). g(10,7,1). g(10,8,1).
g(11,1,2). g(11,2,1). g(11,3,1). g(11,4,0). g(11,5,2). g(11,6,0). g(11,7,2). g(11,8,1).
g(12,1,2). g(12,2,0). g(12,3,0). g(12,4,2). g(12,5,1). g(12,6,1). g(12,7,0). g(12,8,1).
g(13,1,2). g(13,2,0). g(13,3,1). g(13,4,2). g(13,5,2). g(13,6,0). g(13,7,2). g(13,8,2).
g(14,1,2). g(14,2,2). g(14,3,2). g(14,4,2). g(14,5,1). g(14,6,2). g(14,7,2). g(14,8,0).
g(15,1,1). g(15,2,2). g(15,3,0). g(15,4,1). g(15,5,2). g(15,6,0). g(15,7,1). g(15,8,0).
g(16,1,1). g(16,2,2). g(16,3,0). g(16,4,2). g(16,5,2). g(16,6,0). g(16,7,1). g(16,8,0).
g(17,1,1). g(17,2,2). g(17,3,2). g(17,4,2). g(17,5,1). g(17,6,2). g(17,7,2). g(17,8,0).
g(18,1,1). g(18,2,1). g(18,3,2). g(18,4,2). g(18,5,1). g(18,6,2). g(18,7,2). g(18,8,0).
g(19,1,1). g(19,2,1). g(19,3,2). g(19,4,1). g(19,5,1). g(19,6,2). g(19,7,2). g(19,8,1).
g(20,1,1). g(20,2,0). g(20,3,0). g(20,4,2). g(20,5,1). g(20,6,0). g(20,7,1). g(20,8,1).
geno(1..20). site(1..8). haplo(1..40).

A.3 RNA secondary prediction

Try these instances with the two different energy functions.

1. E1: 18 contacts, E2: 16 contacts.

seq(1,a). seq(2,c). seq(3,g). seq(4,a). seq(5,a). seq(6,a).

seq(7,u). seq(8,c). seq(9,g). seq(10,a). seq(11,a). seq(12,a).

seq(13,c). seq(14,g). seq(15,c). seq(16,c). seq(17,c). seq(18,a).

seq(19,u). seq(20,u). seq(21,u). seq(22,u). seq(23,g). seq(24,u).

2. E1: 16 contacts, E2: 14 contacts.

seq(1,c). seq(2,c). seq(3,a). seq(4,a). seq(5,g). seq(6,a).

seq(7,u). seq(8,g). seq(9,u). seq(10,g). seq(11,g). seq(12,a).

seq(13,g). seq(14,g). seq(15,c). seq(16,u). seq(17,g). seq(18,g).

seq(19,g). seq(20,g). seq(21,u). seq(22,c). seq(23,a). seq(24,g).

A.4 Protein Folding

1. The first instance has many equivalent solutions, but it is easy to understand
that the first one cannot be improved, therefore the search is very fast

% hppppppppppppph

prot(1,h). prot(2,p). prot(3,p). prot(4,p).

prot(5,p). prot(6,p). prot(7,p). prot(8,p).

prot(9,p). prot(10,p). prot(11,p). prot(12,p).

prot(13,p). prot(14,p). prot(15,p). prot(16,h).



2. here the h stay in a a central core. The search concludes in less than one
minute with a 6-contact solutions. You can extend with h(pph)n obtaining
nice results.

% hpphpphpphpphpph

prot(1,h). prot(2,p). prot(3,p). prot(4,h).

prot(5,p). prot(6,p). prot(7,h). prot(8,p).

prot(9,p). prot(10,h). prot(11,p). prot(12,p).

prot(13,h). prot(14,p). prot(15,p). prot(16,h).

3. This instance has several equivalent best solutions but it is not easy to
understand that a best solution cannot be improved. Call it with length 12
(as stated), then increase.

% hhhhhhhhhhhh

prot(1,h). prot(2,h). prot(3,h). prot(4,h).

prot(5,h). prot(6,h). prot(7,h). prot(8,h).

prot(9,h). prot(10,h). prot(11,h). prot(12,h).

A.5 Inconsistencies in Networks

This is the instance used in [61].

vertex(le). vertex(li). vertex(g). vertex(lacY).
vertex(lacZ). vertex(lacI). vertex(a). vertex(cAMPCRP).
%
input(le). input(g).
%
edge(le,li). edge(li,g). edge(lacY,le). edge(lacY,li).
edge(lacI,lacY). edge(lacI,lacZ). edge(lacZ,li). edge(lacZ,g).
edge(lacZ,a). edge(a,lacI). edge(g,cAMPCRP). edge(cAMPCRP,lacY).
edge(cAMPCRP,lacZ).
%
observed(le,li,plus). observed(li,g,plus). observed(lacY,le,minus).
observed(lacY,li,plus). observed(lacI,lacY,minus). observed(lacI,lacZ,minus).
observed(lacZ,li,minus). observed(lacZ,g,minus). observed(lacZ,a,plus).
observed(a,lacI,minus). observed(g,cAMPCRP,minus). observed(cAMPCRP,lacY,plus).
observed(cAMPCRP,lacZ,plus).

Different results can be obtained by adding different observations on nodes.
For instance with the following input, a minimal solution with two edge revered
is obtained:

observed(le,plus). observed(li,plus).

observed(g,plus). observed(lacY,plus).

observed(lacZ,plus). observed(lacI,plus).

observed(a,plus). observed(cAMPCRP,plus).

while giving the following partial observations the network is consistent and an
answer set with 0 changes is found.

observed(le,plus). observed(g,plus).



A.6 Metabolic Networks

This is the complete instance of the example in Figure 12.

draft(d).

reaction(r1, x). reaction(r2, x). reaction(r3, d).

reaction(r4, d). reaction(r5, x). reaction(r6, d).

reactant(m1, r1). reactant(m2, r2). reactant(m2, r3).

reactant(m3, r4). reactant(m4, r4). reactant(m1, r5).

reactant(m4, r5). reactant(m4, r6).

product(m3, r1). product(m3, r2). product(m4, r3).

product(m5, r4). product(m6, r5). product(m7, r6).

seed(m1). seed(m2). target(m5). target(m7).

The following example is from Sven Thiele PhD thesis [103, p. 42].

draft(d).

reaction(r1, d). reaction(r2, d). reaction(r3, d).

reaction(r4, d). reaction(r5, d). reaction(r6, d).

reaction(r7, a). reaction(r8, a). reaction(r9, a).

reaction(r10, a).

reactant(m2, r1). reactant(m7, r2). reactant(m8, r2).

reactant(m3, r3). reactant(m4, r3). reactant(m6, r4).

reactant(m9, r4). reactant(m9, r5). reactant(m12, r6).

reactant(m13, r7). reactant(m12, r8). reactant(m15, r9).

reactant(m1, r10).

product(m4, r1). product(m3, r1). product(m9, r2).

product(m5, r3). product(m6, r3). product(m10, r4).

product(m10, r5). product(m11, r5). product(m13, r6).

product(m5, r7). product(m15, r8). product(m10, r9).

product(m7, r10). product(m8, r10).

seed(m1). seed(m2). seed(m12).

target(m5). target(m10).


