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Abstract

Graphs have been widely used to represent objects and connections in applications such as the Web, social net-
works, and citation networks. Mining influence relationships from graphs has gained interests in recent years because
providing descriptive influence information about the object connections in graphs can facilitate graph exploration,
graph search, and connection recommendations. In this paper, we study the problem of detecting influence aspects,
on which objects are connected, and influence degree (or influence strength), with which one graph node influences
another graph node on a given aspect.

We propose two generative Aspect Influence Models, OAIM and LAIM, to detect both influence aspects and
influence degrees. These models utilize the topological structure of the graphs, the text content associated with
objects, and the context in which the objects are connected. We compare these two models with one baseline approach
which considers only the text content associated with objects. The empirical studies on citation graphs and networks
of users from Twitter show that our models can discover more effective results than the baseline approach.

Keywords: graph, influence aspect, influence degree, probabilistic generative model, Gibbs sampling

1 Introduction

Graphs have been widely used to represent objects and interactions between objects in many applications such as
the Web, social networks, and citation networks. The connections among objects (i.e., edges between graph nodes) in
graphs capture that one object has influences over other objects. However, these connections are not equally important.
For instance, strong and weak ties often exist in social networks [22]. Most existing graphs do not directly capture and
represent how strong and on what aspects the influence relationships are.

Let us use influence aspect to denote on which area (or dimension) that one object influences another object and
the influence degree to denote how strong the influence is. Mining and providing influence relationships with influence
aspects and influence degrees to describe object connections can greatly improve the use of graphs in the process of
graph exploration (e.g., [15,23[26]]), graph search (e.g., [16]) , and connection recommendations based on object
relationships in graphs (e.g., [21,24]). We give two examples to show the need for mining influence degrees and
aspects from graphs.

Motivating Example 1: Research articles often cite each other to show their connections. The citation relationships
among articles can provide a researcher helpful information to find articles related to what (s)he is interested in.
However, given a research article p, there may be hundreds or thousands of research papers citing it. Although all
these articles are somehow influenced by the article p, only very few of them are highly influenced by it regarding one
aspect (e.g., methodology). Being able to discover on which aspect and how strong one article influences the others
can greatly help a researcher when (s)he explores or searches publication collections.

Motivating Example 2: People in a social network are connected with and have influence to each other. However,
even for directly connected people, their influence to each other is different. Discovering the strength of connec-
tions and the connection types can help identify strong ties (i.e., people with high influence relationship). Stronger
influence relationship can provide more information for the recommendation. For instance, if a user named Alice is
influenced by her friend Sarah more on entertainment aspect and influenced more by her friend Bob on study aspect,
recommendations to Alice about which movie to watch should use more movie preference and movie list from Sarah.

In the literature, much effort has been put to discover influences on different types of graphs. But most of these
techniques [4}15/23}]26]] focus on detecting influence degrees.

Our work is different in that we detect both influence aspects and influence degrees at the aspect level from one
graph by utilizing the topological structure of graphs, the text content associated with graph nodes, and the context



in which the graph nodes are connected. In particular, influence aspects denote how two objects are connected and
influence degrees at the aspect level describe how strongly two graph nodes are connected on the given aspect.
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Figure 1: Graphs G (without influence relationships) and imaginary G; (with influence relationships): the influence
aspects that can be annotated on the edges are: b (ackground), e (xperiment), m (ethodology), p (roblem)

Three major challenges need to be addressed to discover such influence information from graphs. The first chal-
lenge is to properly define, represent, and model influence aspects and aspect-level influence degrees. The second
challenge is to objectively measure the effectiveness of the discovered results. The third challenge is to make full
use of both the text and structure information of graphs in the discovery process because they all carry informative
knowledge.

We propose two novel Aspect Influence (AI) models to capture the influence aspects and influence degrees at the
aspect level by utilizing both the text and structure information in a graph. In particular, we model the text information
of graph nodes using latent topic states. We model the graph edges (structure) by associating with them latent influence
aspects and aspect-level degrees. With such modeling, from the perspective of generating a graph node, the content
of a graph node can be generated either by introducing novel information or by inheriting information (tokens, topics)
from the connected graph nodes on the influence aspects. When the latent influence degree from one node o’ to another
node o on a given aspect a is higher, more tokens of o are drawn from o’ on aspect a. Our contributions are as follows.

e We formally define the problem of discovering aspect level influence relationships, which consist of influence
aspects and influence degrees on specific aspects, among graph nodes.

e We propose two generative probabilistic models, Latent Aspect Influence Model (LAIM) and Observed As-
pect Influence Model (OAIM). These two models describe the generative process of graph node contents by
considering both text and structure information in graphs.

e We implement a blocking Gibbs sampling approach to learn these two models.

e We perform extensive experiments using real data sets (citation network, Twitter) to show the effectiveness of
the proposed approaches. Quantitative comparisons of LAIM and OAIM with one baseline approach show that
introducing influence aspects can provide more comprehensive influence relationships among graph nodes.

This paper is organized as follows. Section [2] formally defines the problem and related notations. Sections [3]and

explain in detail our models and the proposed approach to learn the models and to derive the influence relationships
using the models. Section [6] reviews the related work in this area. Section [5] shows our experimental results on the
proposed approaches. Finally, Section [/|concludes this paper and shows possible future directions.
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Figure 2: Aspect Influence Models



2 Problem formulation

Our study takes as input a graph G = (V, E), where V is the set of graph objects o and E is a set of directed edges
o' — o. Bach graph node (or an object) o is associated with descriptive information. For instance, in a citation network
of research articles, one research article is a graph object o and it contains a list of words; In social networks, a user
is a graph object, which is associated with descriptive information. We use object profile to denote the descriptive
information associated with each graph object and formally define it as follows.

Definition 2.1 (Object profile) The profile of an object o is a sequence of tokens: t,1,t02," - ,to.1(0), Where T'(0)
is the number of tokens in the profile of 0 and t, pos is the observed value of this object at position pos.

We use D and T to represent the total number of objects in graph G and the total number of distinct tokens in all the
object profiles respectively. We also use D to denote the set of tokens in the profiles of all the graph objects.

A directed edge o’ — o in G denotes that object o’ influences object 0. One object may influence another object
differently on different aspects (or dimensions) as described in the motivating examples in Section[I] Such aspects
may be explicitly denoted (i.e., observed) in the graph. E.g., in citation networks, the observed aspect terms can be
background, problem, methodology, etc. In social networks, the observed aspect terms can be politics, music, movie,
etc. Let A be the set of observed aspect terms and T, be the total number of distinct observed aspect terms in A.

Definition 2.2 (Influence aspect) One observed influence aspect a is an observed term from A. One latent influence
aspect a is a probabilistic distribution among all the T, distinct observed aspect terms.

We use A to denote the total number of latent influence aspects. The definition of the latent influence aspect is similar
to the topic definition in topic modeling [2f], where each latent topic is a distribution over the observed tokens that are
used to describe objects. However, they are different in that the observed aspect terms for a latent aspect is from A
while the observed tokens for a latent topic is from D, and A # D.

Definition 2.3 (Aspect-level influence degree ) When an object o' influences another object o on an aspect a, we use
I(o' % 0), which is a number in the range of [0, 1], to denote the influence degree (or influence strength) that o' has
over o on aspect a.

Influence is directional and influence degree is not symmetric, i.e., I(o’ = 0) does not equal to I(0 = o') generally.

Definition 2.4 (Research Problem) Given a graph G,=(V, E), our problem is to discover an annotation function f
to annotate G5 to Gy = (V, E, A, W) where V and E are the same to that in G5, A and W are annotations on E such
that f(e,a) = wwheree € E,a € A, w € W, and w € (0.0,1.0].

For example, given a graph G in Figure [T[a), the discovery algorithm is to output another graph G; which is
associated with vectors of influence aspects and influence degrees on those aspects.

3 Aspect influence models

Objects’ profiles and their influence relationships are governed by three major factors. The first factor is the set of
latent topic states associated with each object. An object’s latent topic states determine the internal theme of this
object. Two objects with similar internal themes tend to influence each other more compared with objects that do not
share internal themes. E.g., an article with theme “bioinformatics” is more likely influenced by articles with theme
“biology” than by articles with theme “politics”. This factor has been taken into consideration in research of topic
modeling [2]. The second factor is the set of links that connect the objects (i.e., edges between graph nodes) [4}/15]].
The explicitly linked objects have obvious influence relationships, so the model should take the explicit links into
consideration. The third factor is the context in which the object links appear [13]]. Such context can reflect the
influence aspect. For example, the link connecting one article to another article appears in the context of “experimental
results” is more likely reflecting influence aspect “experiment” or “problem definition”, but is less likely reflecting
influence aspect “entertainment”. Our solution framework is to learn these governing factors and derive the influence
relationships from these governing factors. In our approaches, we adopt the definition of latent topic states which are
probabilistic distributions over tokens (or words). We define two types of influence aspects in our models as discussed
in Sections[3.1]and

In our framework, the object collections can be viewed as a set of profiles generated by a generative process. The
parameters used in the aspect influence models are listed in Table



Symbol meaning
0,0 | aninfluenced object and an influencing object
t,t" | tokens for o and o’ respectively
ta observed aspect term for a token
b latent boolean variable
a latent aspect variable
z, 2" | latent topic states for o and o’ respectively
T(o) | the number of tokens in the profile of object o
R(o) | the set of objects that influence o
D the total number of objects
D the set of all the observed tokens in object profiles
T the total number of distinct tokens
T. | the total number of distinct aspect terms
Z the total number of latent topic states
A the total number of latent influence aspects
A the set of all the observed aspect terms
a¢ | Dirichlet prior parameters =(ag, - - - , ovg) fort
dp | Dirichlet prior parameters =(aw, - « - , ) for z
aly | Dirichlet prior parameters =(c,, - - - , ) for a
ay | Dirichlet prior parameters =(cvy, - - - , Q) for ¢
a~ | Dirichlet prior parameters =(y, - - - , @) for o
as | Beta prior parameter=(oid, Qnew) for b
¢ a Z x T matrix
0,0’ | aD x Z matrix
vy a D x T, x L(D) matrix, where L(D) = maz,(R(0))
n a D x A matrix
B8 a D x 2 matrix
P a A x T, matrix

Table 1: Parameters for aspect influence models
3.1 Latent Aspect Influence Model (LAIM)

The creation of an object profile can be envisioned as being generated from several foundamental ideas. From the
perspective of generating an object profile, when an object is not influenced by any other objects, its tokens’ generation
is only governed by their latent topics, which is not the focus of this paper. The Latent Aspect Influence Model (LAIM)
is introduced mainly to govern the generation of profile tokens for objects that are influenced by other objects. When
an object o is influenced by another object o/, then part of o’s idea (i.e., profile) is new, but the other part of its idea is
borrowed from o’. When o borrows idea from o', the tokens will be affected by both the major idea of o’ (i.e., topics
of 0') and the influence aspect from o’ to o. Inspired by the generation of tokens in the topic modeling [2]], where each
profile token is assumed to be associated with a latent topic and is draw from a topic-token distribution, Latent Aspect
Influence Model (LAIM) assumes that every profile token of o is not only associated with a latent topic from o', but
also associated with an influencing aspect from its influencing objects. Thus, its generation is controlled by both the
(observed/latent) influence aspect and the influencing object’s latent topic.

Figure[2a) shows the aspect influence model which models the influence aspect as a latent state a. We denote this
model as Latent Aspect Influence Model (LAIM). In LAIM, there are two types of observed variables, object-profile
tokens ¢ and influence-aspect terms ¢,. In LAIM, we incorporate two types of objects: the objects that explicitly
influence other objects (i.e., graph nodes with outgoing edges) and the objects that are explicitly influenced by other
objects (i.e., graph nodes with incoming edges).

For objects that explicitly influence other objects, we model that their profile tokens ¢’ arise from latent topic states
z' by using LDA model. The topic mixture 6’ is used to represent the probabilistic distribution of a latent state over all
the possible latent states. The prior of 6’ is generated using a Dirichlet hyper-parameter @y = (v, -+ , @g).

For objects that can be influenced by other objects (i.e., graph nodes with incoming edges), we model their profiles
by considering their own contents and their links from other objects. The profile of an object o is formed with both new
information and inherited information from other objects that influence o. An object o’s latent topic z (which is used
to draw token ¢) can be drawn from its own topic mixture  or its influencing objects’ topic mixture ¢’. This choice is
modeled with a binary variable b which follows a Bernoulli distribution. The Bernoulli distribution’s parameter 5 is



learned by the model, given an asymmetric Beta prior &g = (old, Onew)-

1. For every latent topic state z, draw ¢. ~ dirichlet(ds)
2. For every latent aspect a, draw 1), ~ dirichlet(dly)
3. For every object o that can influence other objects

(a) Draw 0, ~ dirichlet(dy)
(b) For each position pos in the profile of object o
i. Generate 2’ with p(2|0; 6o) ~ multi(67,)
ii. Generate t’ with p(t'|2'; ¢./) ~ multi(.)
4. For each object o that can be influenced by other objects
(a) Draw 6, ~ dirichlet(dp)
(b) Draw 7j, ~ dirichlet(d,)
(c) For each latent aspect a, draw 7o, ~ dirichlet(d-)

(d) Draw the proportion between newly generated values and values generated from its influencing object
Bo ~ beta(®old, Onew)
(e) For each position pos of the profile for object o, generate its token from either an influencing object or innovative state.
i. Draw a coin b with p(b|o) ~ bernoulli(S,)
ii. ifb=0,
A. Draw z with p(z|0; 6,) ~ multi(6,)
B. Generate t with p(t|z, ¢) ~ multi(¢.)
iii. if b = 1, draw an influence aspect a, an influencing object o', and a topic state 2’ for o from o’
A. Draw a with p(alo, 7j,) ~ multi(7,)
B. Generate t, with p(ta|a, ¥a) ~ multi(i,)
C. Draw an interacting object o’
with I(0" — o|a) ~ multi(Yo,q)
D. Draw z=2" with p(2'|0’, 0 /) ~ multi(6 )
E. Generate t = t' with p(t'|2’, ¢./) ~ multi(¢.)

Figure 3: Generative process for LAIM: 2/, z, t, t, b, a, o’ represent z;pos, Zo,poss t’o,pos, to.poss Do, poss Go,poss o;’pos
respectively

Based on the above described ideas, the generative process of object profiles and their interactions are outlined
in Figure [3] This generative process takes as input a graph G,=(V, E') with connected objects in V' and outputs an
annotated graph G;=(V, E, A, W). The first two steps of the generative process generates the latent topic to token
distribution mixture ¢, a Z x T matrix, and latent aspect to observed aspect term distribution mixture 1. In particular,
qu captures the distribution of a given latent topic state z on all the observed tokens. 1/7@ represents the distribution of
a given latent influence aspect a on all the observed aspect terms .

When an object o can influence other objects, we generate its latent topic states 2’ and tokens ¢’ (Step 3).

When an object o can be influenced by other objects, we generate its profile either from its influencing object o’
or from its own latent topic mixture (Step {). When its profile tokens are generated with novel topics, we generate its
latent topic state z and token ¢ (Step #(e)ii). On the other hand, when an object o can be influenced by other objects,
its profile tokens are generated based on a latent aspect a from an influencing objects o’. In this case, the latent aspect
needs to be drawn first. Then, the influencing object o’ is drawn from the mixture component 7, ,, given the generated
latent aspect a. Given the generated o', the generative process next generates the latent topic state 2’ (from 6’) and
token ¢’ (Step (e)iii).

Note that an object can influence other objects and be influenced by others at the same time (e.g., o2 and o3 in
Figure[I). In other words, an object has both incoming and outgoing edges. To model such objects, we use the similar
idea as that in [4,[I3}[19] to keep two copies of the object profiles: one copy is generated with Step [3] and the other
copy is generated with Step[d] The generative process leverages these two procedures together.



3.2 OAIM model

The LAIM models an aspect as a latent state a and uses it to decide how o affects the generation of o. Each a is
represented as a distribution over the observed influence aspect terms. This model is complicated. With the intuition
that the models with more variables are harder and less efficient to learn compared with models with less variables,
we propose a second generative probabilistic model by treating observed influence aspect terms ¢, as the influencing
aspects. Figure [Jb) shows this probabilistic model, which is denoted as OAIM. This model contains less variables.
Intuitively, it takes less time to learn OAIM than to learn LAIM given the same input. However, OAIM’s results may
not be as effective as LAIM. We compare these two different models in our experiments.

4 Model learning via Gibbs Sampling

We utilize the Gibbs sampling approach to learn the model parameters and latent states that control the generative
process. Gibbs sampling [7] allows to learn a model by iteratively updating each latent variable when fixing the
remaining variables. The latent variables in the generative process of Figureare b,a, o,z z.

To facilitate the sampling process, we need to keep counts of tokens assigned to different configurations. The
update equations of LAIM and OAIM for the Gibbs sampling could be computed in constant time with the count
cache.

For objects that can be influenced by other objects, we use Ny, ... dv, [V1, - - - ,v;] to denote the number of tokens
assigned to the configuration with dv; = vy, dv; = v; during the sampling process. For example, N, , o/ 5[1, 3,2, 1]
denotes the total number of tokens that are assigned to object 0; and that come from object 05 on aspect az when the
latent variable b is 1. For objects that can influence others, the count cache is denoted as N'. The detailed meaning of
each count cache is given as follows.

For each object o that belongs to the set of influencing objects, we need to keep the following counts. The subscript
“p=;" denotes that the count is only used when b = 7 where ¢ can be 0 or 1.

e N/ .: the times to sample latent topic state z for object o.

e N!: the times to sample for object o.
Here Né(oi)zzzzizl N, (04, 2i).

o N ;7,5: the times to sample latent topic state z for token ¢ for all the objects in the influencing object set.

e N!: the times to sample latent topic state z for all the objects in the influencing object set.
Here, N;(zi)=zt7;:1 N (2, ti).

o N c/)’.z’,bzl: the times to sample latent topic state 2’ using object o only when o is used as an influencing object
o to generate latent states for other objects.

o N (’),7 1 the times to sample object o only when o is used as an influencing object o’ to generate latent states for
other objects.

Here, N, ,_;(0i,1)=) Ny 1 p=1(0is 21, 1).

For each object o which belongs to the set of influenced objects, we need to keep the following counts.

Z
Zizl

e N, .p—0: the times to sample latent topic state z for object o. This happens only when b=0.

e N, o p=1: the times to use o’ to draw the tokens for o. This happens only when b=1.

Z
Z,;:l

e N, ;: the times to sample different b values for object o. Here, N, ;(0;,0) = >
Noyb(oi, 1) = ZO;GR(Oi) No,o’,b:1(0i7 0;'7 1)

e N,: the times to sample object o.
Here No(0:) = Y25, _o Now(0:, by).

® Ny a0 b=1: the times to sample the latent influencing aspect @ using influencing object o’.

A
No,o’,b:1(0i7 0;‘7 1) = Zak:l No,a,o’,b:l(oia ag, 0;‘7 1)

e N, =1 the times to sample aspect a for object o.

Noa,p=1(04, ax, 1)

=Zo’j€R(oi) Noa,0r p=1 (04, ar, 0;'7 1).
° Na,ta.,o’,bzl: the times to sample for observed aspect ¢, using influencing object o’ .
® N, b=1: the times to sample for observed aspect t,.

No,ta,b:1 (0i7 tak 5 1)

=Zo’] ER(0;) No,ta,o’,b:1 (0i7 tak , 09'; 1)

No. 2 p=0(0i, 2;,0),
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e N ;: the times to sample ¢ for latent state z.
e N,: the times to sample latent state z.

( ) Zt Zt(zmtz)

Example 4.1 Given the graph in Figure |l| with objects 01,02, 03,04,05. The set of influencing objects is S’ =
{01, 02,03,05} and the set of influenced objects is S = {02, 03,04}. For every object in S’, we need to maintain
all N' counts. For every object in S, we need to maintain all the N counts.

The Gibbs sampling algorithm needs to sample the latent variables using update equations. The update equations
used to learn the aspect influence models are given in Equations [I|-[6] We show the detailed derivation of Equation
in Section [9.1] The other equations can be derived analogously.

In each iteration i, to generate the profile tokens for object o, 0’s tokens come from other objects that influence o
when bis 1. Let T’ (a) be the total number of tokens coming from other objects for influence aspect a, and let T’ (o, a)

be the total number of tokens coming from a specific influencing object o’ on aspect a. Then, the ratio T((z ;1) can

estimate the strength that o’ influences o on aspect a, i.e., I (0’ N 0).

Since the expected value of any parameter variables can be approximated by averaging over all the samples [[15]
after the sampling chain converges (i.e., after the burn-in phase), the influence that oy, has over o; on aspect a can be
estimated as follows.

) I(op =

i Noao’boj’a Ok, 1 ](i)JFO"y
= No,a,bl0j,a, 1] +|R(0;) ey

where m is the total number of iterations of the sampling chain after converge, and the superscript () denotes the i-th
iteration.

OAIM. In learning OAIM, the update Equations [6] are still used. However, Equation [3]is not needed
for OAIM because OAIM does not model latent influence aspect a anymore. In addition, Equation [4|is changed to
Equation

No,t,a,o’,b(o’ taﬂo;ims’ D4ay—1
Notq.b(05ta,1) + |R(0)|ay — 1

®) P(0p0, 6, 17, 2, 27, 0 ~poss tas b) X Pocyr b1 -



To implement the Gibbs sampling algorithm, we adopt the blocking Gibbs sampling strategy [12]], which samples
several variables together as a block to speed up the Gibbs sampling process for complex probabilistic models. In
particular, to sample token ¢,,,, for influenced objects, all the latent variables associated with position pos (i.e., bpos,
Apos (for LAIM), 0;,05, Zpos) are sampled together. To sample token ,,,, for influencing objects, the latent variable that
we need to sample is .

Time Complexity.

Let M be the total number of iterations before the sampling process converges.

For influencing objects, the sampling procedure is the same for both the LAIM and OAIM models. In each
sampling iteration, the sampling process samples a new latent state z,,s € {1,...,Z} for each token ¢, in every
object’s profile. So the time complexity for sampling influencing objects in both LAIM and OAIM is O(M - D - T (o) -
7), where T'(0) is the average number of tokens in object o.

For the influenced objects, the sampling process in each iteration draws a new block of latent variables by,s,
apos(LAIM), o;(,s, Zpos for each token ¢, in every object. Since we adopt the blocked Gibbs sampling strategy, the
candidate size for new sample at each position is the product of the numbers for each variable’s values (or states).
Thus, the time complexity of sampling influenced objects is O(M - D - T(0) - Z - R(0) - A) for LAIM and is O(M -
D -T(o) - Z - R(0)) for OAIM, where R(0) is the average number of objects that influence the object o.

S5 Experiments

All the three approaches are implemented using Java and run on a workstation with Intel(R) i17-2600 Quad Core CPU
@ 3.40GHz and 16G memory, running OpenSUSE.

Baseline approach. Since no other works exist to model object influences at the aspect level, we implement a simple
intuitive approach to calculate the influence relationships at the aspect level to compare with LAIM and OAIM. This
approach, denoted as Baseline approach, calculates the influence relationships based on the contents of object profiles.
It first calculates the normalized TF-IDF value for each token in all the objects’ profiles. Let tfidf (t,0s|0) be the

normalized tf-idf value of a token at position pos in the profile of object o. Let ¢ defo, be the tf-idf vector for an
influencing object o’ and ¢ fidf, , be the tf-idf vector for an influenced object o in the context related to aspect a.

The influence from an object o’ to object o on aspect a can be estimated as (o' = o)=cosine(tfidf,,tfidf, ).
This value leverages the influence from o’ to all the tokens in o within the context of aspect a. The baseline approéch
utilizes one parameter A € (0, 1) to capture the probability of sampling new tokens for an object 0. Accordingly, 1 — A
is the probability of sampling a token for an object o from other influencing objects o'.

Data sets. We used two real data sets, CiteMisc and Twitter5000, to test our proposed approaches. (1) CiteMisc data
set contains forty six research articles, which we collected on eight major research topics, including association rule
mining, clustering, frequent pattern mining, keyword search over graphs, topic modeling, information retrieval, spatial
database query processing, XML database queries. To collect this data set, we first chose eight articles, each of which
is from one topic, as seeds. Then, for each of these articles o, we find the set of the articles {0’} such that o’ is directly
cited by o (i.e., o’ appears in the reference list of o) or o’ is indirectly cited by o. We manually label these research
articles with eight observed influence aspects: abstract, background, problem definition, methodology, experiment
introduction, experiment data, experiment comparison, experiment analysis. The total number of distinct tokens, 7', is
~1000 and each article cites (i.e., influenced by) ~5 articles on average. (2) Twitter5000 data set contains 5000 twitter
users and their recent 200 tweets. The total number of tokens is ~5M/ and the number of distinct tokens is ~15K.
Each twitter user in this data set follows (i.e., implicitly is influenced by) ~56 users on average. This data set embeds
~2K observed aspects, which are the categories tagged to the users. For scalability tests, we partition this data set to
five smaller data sets with 500, 1000, 1500, 2000, 5000 users. The corresponding approximate numbers of total tokens
are 0.6M,1.1M,1.6M,2.2M and 4.8M.

The burn-in value for Gibbs sampling process is generally set to be half of the total number of iterations [6]. In our
experiment, the burn-in value in different settings is set to 100, which is almost half of the total number of iterations.
The hyper-parameters in LAIM and OAIM are set as oy = 0.01, a9 = 0.1, oy = 0.1, ayy = 0.1, a; = 0.1, g = 0.5.
As suggested in [9]], each vector parameter (e.g., dy) is set as a symmetric prior. I.e., the scalar values in the parameter
vector are the same. Second, we set the values of these parameters according to the conclusion from [8]]. We also note
that previous research [25] shows that these hyper-parameters has strong impact on model inference and how to set
up and estimate hyper-parameters is not easy and not throughly investigated [9]. In our future work, we will perform
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Figure 4: Predictive likelihood functions

thorough synthetic analysis about the effect of these hyper-parameters over our influence models. The final output
parameter result is the average of that in each iteration after burn-in period but before converge.

5.1 Effectiveness Measurements

Both subjective and objective measurements are used to evaluate the results. For subjective evaluation, we did case
studies on two small data sets (Section [5.2.1). We also used two objective measures PrecisionQK and predictive
log-likelihood to show the effectiveness (Sections[5.2.2and [5.2.3|respectively).

Log-Likelihood. The predictive log-likelihood is calculated on the tokens in the profiles of both influencing and
influenced objects to compare the generalization capabilities of the baseline approach and our models, LAIM and
OAIM. For the baseline approach, the likelihood for all the tokens in object o is calculated as Equation 9]

For LAIM and OAIM, we adopt a similar approach as that in [[13}20] to calculate the predictive log-likelihood by
extending the Gibbs sampling process over the unseen data. For LAIM, the Gibbs sampling process already learned
Mparv = (6,0,6,7,m, ﬁ w) where these parameters are explalned in detail in Tablel With D, new objects,
we learn A(0)=(0ps1,-- ,0psp... ) AO)=0ps1,-- 0 pip... ) AY)=(YD41s- - »vD+D,.. ). The initial-
ization of A(#), A(6') and A( ) are the same as that of 1n1t1a1121ng 6, 0" and  in the initial Gibbs Sampling. Then,
the Gibbs sampling continues to leverage the new objects until the sampling chains converge. Given the newly learned
parameters 117 ﬁ’;“’, the predictive likelihood of a new influencing object o, denoted as p(trf’), can be expressed
as Equation The predictive likelihood of a new influenced object o, p(t_‘;) LAIM, can be represented in detail as
Equation [T]

For OAIM, the Gibbs sampling process already learned o arns = (¢, 6,6’,~, 3). In the continued Gibbs Sam-
pling, the update equations are the same as those in Sectlonlexcept that any count with new object o or ¢ is initialized
to zero. The likelihood of a new influencing object o, p(t’ °) is still calculated using Equatlon The predictive like-
lihood of a new influenced object o is denoted as p(to)o arm and is detailed as Equatlon



[User u

Top-2 aspects [ Top-2 influencing users

Election Day/Night 2012 TeamRomney, samyoungman

plisefoley National Security marcambinder, rozen
N } national politics WSJ, Lis Smith

deharlesReuters | —re Crrcs WSJ, HuffPostPol

hterkel thinkprocess-staff brainstelter, ThinkProgress
self_created David_Ingram, jaketapper

Dl Reporters ZekeJMiller, mattspetalnick

ReutersPolitics self_created NewsHour, ReutersWorld

IWestWingReport self,crefnted JlmPethokoukls, Bl?lGales
Journalism mitchellreports, nytimes

Table 2: Top-2 Influence relationship discovered by OAIM on Tivitter500 data set

5.2 Result analysis
5.2.1 Aspect influence case studies

The first set of experiments is to show the effectiveness of our proposed approaches through case studies. To sub-
Jjectively verify that the models learned meaningful results, we show a very few number of objects and their most
influencing objects on given influence aspects for the Twitter500 data set. We also did case studies on the CiteMisc
data set and get meaningful results.

For the Twitter5000 data set, we extract a small number of famous users and analyze the aspects on which they
are influenced. These famous users are used because it is easier to subjectively verify the findings from our models.
Table 2| shows a few number of results from our OAIM model. For instance, a user elise foley, who is a reporter for a
newspaper Huffington Post is influenced on the aspect Election Day/Night 2012 by the user Team Romney the most.
This information shows that this reporter’s interest is greatly influenced by Romney’s team in the election. In addition,
elisefoley is influenced on the aspect National Security by another user marcambinder, who is inside the Government
Secrecy Industry. Similarly, a user dcharlesReuters, who is Reuters correspondent in Washington, covering homeland
security issues, is influenced on the aspect of national politics by the WSJ (i.e., Wall Street Journal) the most.

[[id [ Article [ Top-2aspects | Top-1 influencing article |

Density-Based Clustering in Spatial Databases: Background BIRCH: An Efficient Data Clustering Method for Very Large Databases

P11 The Algorithm GDBSCAN and its Applications Solution A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise

Unsupervised Prediction of Citation Tnfluences Background The Author-Topic Model for Authors and Documents

b2 SUpETVIS ) Solution Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks
. N . . Background Set-Oriented Mining for Association Rules in Relational Databases

p3 | Scalable Algorithms for Association Mining Solution Sampling Large Databases for Association Rules

Identifying Meaningful Return Information for Background Effective Keyword Search in Relational Databases
P4l XML Keyword Search Solution Efficient Keyword Search for Smallest LCAs in XML Databases

. . . Background ObjectRank: Authority-Based Keyword Search in Databases
ps | Effective Keyword Search in Relational Databases Solution DISCOVER: Keyword Search in Relational Databases
. . . Background Mining Association Rules with Item Constraints

P | Frequent Patterns without Candidate Generation Solution A Tree Projection Algorithm For Generation of Frequent Itemsets

Table 3: Top-1 influencing articles discovered by OAIM for the six seed articles in the CiteMisc data set

Table [3] shows the results of OAIM model on CiteMisc data set with the parameter setting Z=10. There are eight
observed aspects abstract, background, problem definition, methodology, experiment introduction, experiment data,
experiment comparison, experiment analysis. We chose 6 influenced articles and show the most influencing (i.e. top-
1) articles for each of them on two aspects, background and solution, which OAIM discovers from the CiteMisc data
set. For all these listed articles, the most influencing articles and the influence aspects are meaningful. They can give
us further information. For instance, the article ps Scalable Algorithms for Association Mining is most influenced by
the article Set-Oriented Mining for Association Rules in Relational Databases on the Background aspect because they
all study the association rule mining problem. But when it comes to the Solution aspect, the article Sampling Large
Databases for Association Rules influences ps more because they all work on scalable large data processing. We
observe that OAIM model is returning us meaningful results from several Twitter users and CiteMisc dataset which
we can verify subjectively.

To give a concrete idea about the results of LAIM, we also show a small number of users and their most in-
fluencing users on two latent influence aspects in Table ] For instance, user dcharlesReuters is most influenced by
GStephanopoulos (a chief political correspondent in ABC) on latent aspect Ag. As shown in Table[d](b), Ag has higher
probability on observed aspect terms related to news. This makes sense because dcharlesReuters is a correspondent
and his twitter account activity shows that he is influenced more on news aspect.



[ A user u [ Aspect [ Users followed by w

dcharlesReuters latent aspect 8 GStephanopoulos
WestWingReport latent aspect 3 brianstelter
rickklein latent aspect 4 GStephanopoulos
(a) Three users with the top-1 most influencing latent aspects
As (economy) Ay (foreign) Ag (news)
WSJ NGB National Journal on Twitter
OFA-States Foreign Office on Twitter Debate Watch 2012
WSJ staff FCO Ministers HotlineOnCall
Debate Watch 2012 London2012 newzhoundz
HotlineOnCall Sochi 2014 Election Night

(b) Latent aspects Ag, Ay, and Ag

Table 4: Top-1 Influence relationships discovered by LAIM on Twitter500 data set. (There are overall A (=10) latent
influence aspects. Three latent influence aspects, As, A4, and Ag, are shown for demonstration purpose.)
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Figure 5: Precision@3 for CiteMisc (OAIM model)
5.2.2 Precision@QK

We also measure the precision of the top-K results on CiteMisc data set by manually creating the top-3 influencing
objects for eight influencing aspects as ground truth. Then, we calculate the precision@3 of the results discovered
by our OAIM model on different aspects. The precision on four aspects (other aspects show similar trends) and
the average precision are plotted in Figure[5] The results show that our model can find results with high precision for
different numbers of latent topics, and the precision increases with the number of latent topics. The precision@3 values
of baseline model are: 0.54 (background), 0.48 (problem definition), 0.41 (solution), 0.57 (experiment comparison).
These values are smaller than those learned from OAIM.

5.2.3 Log-likelihood measurements

The log-likelihood values of one experimental setting over one data set (Figures [6] are calculated. The reported
log-likelihood is the average of log-likelihood of the objects in the test set. In these figures, LAIMz means that the
number of latent aspects A is z.

We first compare the baseline approach with our LAIM and OAIM models and show the results in Figure[6] For
CiteMisc, T,=7. For Twitter2000, T,=~2K. On both CiteMisc and Twitter2000, OAIM and LAIM get much better
log-likelihood than the baseline approach. This shows that the simple baseline approach is not as effective as our
Aspect Influence Models.

The second set of experiments is to compare the LAIM and OAIM models by running them on both CiteMisc
and Twitter500 data sets. For this set of tests, we plot the difference of log-likelihood values (LLH-DIFF) between
LAIM and OAIM. Figure [/|shows the results when we vary the number of latent topic states (Z). When LLH-DIFF
is smaller than zero, it means that OAIM gets bigger log-likelihood value than LAIM, and OAIM performs better than
LAIM accordingly. On the other hand, a positive LLH-DIFF value means that OAIM is performing worse than LAIM.
Figure [7| shows that when the number of latent topic states Z is smaller, OAIM performs slightly better than LAIM
(with negative LLH-DIFF value). But, when Z is bigger, LAIM performs slightly better than OAIM (with positive
LLH-DIFF value).

The third set of experiments is to evaluate LAIM’s performance when the number of latent aspects, A, changes.
Figure[§]plots the results for both data sets when we vary A. The performance of LAIM improves with the increase of
A when A is small. We can observe that LAIM’s log-likelihood values on unseen data increase as A increases from
2 to 5 in Figure [§a), and as A increases from 10 to 100 in Figure [§(b). This is because latent variables form a set
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Figure 7: Comparing OAIM and LAIM: log-likelihood difference vs. Z

of features extracted from observed variables; a model using more latent variables loses less information, thus shows
higher likelihood in the testing samples. But LAIM’s performance stabilizes or slightly decreases once it reaches a
point. For the CiteMisc data set, which has eight observed aspects, LAIM’s performance is the best when A is 5. For
Twitter2000 data set, which has ~ 2K observed aspects, the best performance is achieved when A is 50. As the latent
variables become more, the sample matrix is sparser, which decrease the predication capability of the model.

5.2.4 Efficiency

We compare the running time for the two models LAIM and OAIM. The results from LAIM10, LAIM20, and OAIM
on Twitter2000 data set with ~2M/ tokens (Figure[9(a)) show that OAIM is much faster than LAIMx no matter whether
the number of latent aspects A is 10 or 20. This result is obvious because OAIM does not need to sample latent aspect
states. Furthermore, the running time for LAIM10 is less than that of LAIM20 confirming the fact that sampling more
latent states needs more time. We also show how these two models scale with the size of graphs with five data sets
containing 500, 1000, 1500, 2000, and 5000 users whose token numbers vary from ~0.5M to ~5M. Figure Ekb)
shows that both models scale linearly to the graph token numbers. This result is consistent with our analysis in
Section 4]

Our experiments also show that both LAIM and OAIM converge, whose measurement is the R [6] of the parameters
that we learn. The number of iterations before convergence for LAIM and OAIM on different sets of parameters
and different size of iterations are similar, varying in the range of [150,167]. As future work, we will analyze the
convergence of both models theoretically and experimentally with more comprehensive parameter settings.

6 Related Work

Topic models such as PLSI [10], Latent Dirichlet Allocation (LDA) model [2], and CTM [1] are designed to model
single document sets. In topic models, every object is associated with a multinomial distribution over latent topics,
each of which is a distribution over the observed tokens that are used to describe objects. Then, every token (or word)
in an object description should be associated with several latent topics and can be virtually treated as being generated
from a mixture of latent topics.

People have put effort to discover associations (i.e., connections) among graph nodes. The first group of works
that are highly related to our research targets to discover influence degrees among objects. Dietz et al. [4] is one of the
first few articles that leverage both the text and links in a citation graph into a probabilistic model to infer influence
strength between articles by utilizing the LDA topic model. Liu et al. [15]] proposed a very similar generative graphical
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model to infer both direct and indirect top-level influence strengths between objects from heterogeneous graphs (e.g.,
citation graphs and co-authorship graphs). However, all these works do not consider influence aspects.

The second group of works are to identify the relationship types among objects in graphs. Diehl et al. 3] introduced
the problem of identifying the types of relationships between communication parties from their communication content
(e.g., messages), where the types of relationships come from a predefined set. The focus of the analysis is on the
communication content associated with graph edges. Our work is different in that we focus on analyzing the content
associated to graph nodes by also leveraging the structure of graphs. The work in [26] discussed techniques to detect
one specific type of influence relationships, adviser-advisee relationship, from publication networks. Tang et al. [22]]
presented a framework to learn the social relationship types for edges in a target graph by utilizing other graphs (source
graphs) with already labeled relationships. The relationship types in [22] are similar to influence aspects in our work.
However, our work differs from [22] in that we do not assume the existence of known relationships from any graphs,
which is given in [[22].

There are other works that discover different types of influence relationships in graphs [|18L[27]]. Kataria et al. [13]]
study the problem of predicting the existence of citation relationships among documents. Their method utilizes the
concept of citation contexts, which are the words occurring close to where a citation happens in the citing documents.
[21] and [24] introduced generative process approaches to do social recommendations for the possible creation of
new graph edges. Miao et al. [|17] presented Latent Association Analysis (LAA) model to discover the association
patterns in bipartite graphs. And the mining result is a correlation degree function between a source document and its
corresponding target documents. [11] utilized cascade Poisson processes to learn the influence strength among users
by analyzing special event sequences which consist of information about when users adopt products. [[14] designed
online algorithms to calculate influence strength among users by looking at a continuous stream of tweets only once.

7 Conclusions and Future Works

In this paper, we study the problem of detecting influence relationships at an aspect level from graphs. In particular,
these influence relationships capture on which aspect (influence aspect) and how strong (influence degree) that one
object influences another. We design two probabilistic models, OAIM and LAIM, to capture and represent these influ-
ence relationships. We developed block Gibbs sampling algorithms to learn the generative models. We show through
case studies that these two models can generate meaningful results and extracts aspects. To objectively measure the
effectiveness of the proposed models, we calculate log-likelihood of unseen data for the two models and a baseline ap-



proach. Extensive experimental results show that the proposed models can effectively discover influence relationships
from graphs. Future works include further analyzing the choice of different parameter values and performing more
subjective evaluations by letting different users give feedback on citation graphs.
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9 Appendix

9.1 Derivation for Gibbs sampling update equation

We exemplify the Gibbs Sampling derivation for LAIM through the update Equation Ifor P(Cpos It, { Z, ; o Eiﬁpos, to, 5)
Equations for the other variables are derived analogously. Let > = {a¢, Qay, an, Qs Oz,y, ag} To start W1th given an

—»

object o, the joint distribution of all the variables is represented as: p(t .22 ,0,d,t,, b|Z) It is rewritten as Equa-
tion[I13]based on the LAIM graphical model.

p(E, 1, 2,2, 0, @,1,,b|%)
13) =p(f, |2, 2/;dy) - p(Z, |0, b dp)
p(07|@; 6~ ) - p(fald; &y) - plaldy) - p(blas)

Since LAIM uses only conjugate priors, Equation[T3|can
by integrating out the multinomial distributions ¢, 6, 6’,
p(E,t,2,2,0,d, ta, E|E)

:/‘p@ 712,27, ) -p(8]dy) dé

an be rewritten as Equation@(Rao-Blackwellized [5] version)
! w n, and 3.
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Now, we show the derivation of p(apos|f: t.22.d, A-poss ta, 5) When we need to sample a at position pos (i.e.,

sample a,,s), it implies that the sample for b at that position b, must be one. Then, p(apos |f, v , Z, % , o , G—poss te, E)
is equal to p(apos|t_: t,2,2,0, A—poss to, b-pos; bpos = 1). The conditional of a,s is obtained by dividing the joint
distribution of all variables by the joint with all variables but a,,, (denoted by @-,,s). Using Equation we get
Equation[T3]
N
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Leta = (a1, ,an) and A(a) = =1 —— , where I'(n) = T'(n — 1) - (n — 1). The integrals in Equation|15|can be derived as
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Equations [T6} [T8] and[T7} After applymg Equations [T6] [T8] and [I7]to Equation[T5] we can get Equation[T9]
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where 7, , is a vector with length R(o0).
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The three components in Equation[I9|can be simplified by canceling the common factors in the A function. We utilize
the the Kronecker delta function 6(x, y) which is 1 iff « = y, and is O otherwise.
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We can apply a similar procedure to simply other components in Equation [[9) with the A functions and get the final
update equation shown as Equation 21]
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