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Abstract

When social networks are released for analysis, individuals’ sensi-
tive information (e.g., node identities) in the network may be exposed.
To avoid unwanted information exposure, social networks need to be
anonymized before they are published. In the literature, a lot of ap-
proaches exist to anonymize social networks to prevent attacks by adver-
saries that know the network structures (e.g., node degrees, neighbors).
However, these techniques cannot prevent the leakage of valuable identi-
fication information during social network analysis if the social network
graphs contain both structural and textual information.

In this paper, we study the problem of anonymizing social networks to
prevent individual identifications which use both structural (node degrees)
and textual (edge labels) information in graphs. We introduce the concept
of Structural and Textual (ST)-equivalence of individuals at two levels
(strict and loose). We formally define the problem as Structure and Text
aware K-anonymity of social networks (STK-Anonymity). In an STK-
anonymized network, each individual is ST-equivalent to at least K-1
other nodes. The major challenge in achieving STK-Anonymity comes
from the correlation of edge labels, which causes the propagation of edge
anonymization. It has been shown in the literature that it is intractable to
optimally K-anonymizing the label sequences of edge-labeled graphs. To
address the challenge, we present a two-phase approach which consists of
two heuristics in the first phase to process partial graph structures (node
degrees) and a set-enumeration tree based approach in the second phase
to anonymize edge labels. Results from extensive experiments on both
real and synthetic datasets are presented to show the effectiveness and
efficiency of our approaches.

1 Introduction

Online social networks, such as Facebook, MySpace, and LinkedIn for connect-
ing with friends, family, and colleagues have grown explosively in the recent



few years. These social networks, when published, provide a lot of opportuni-
ties to study dyadic ties between individuals in these networks. The published
social network data have been used to conduct meaningful analysis, such as un-
derstanding the community formation and evolution [3}/17], discovering topics,
roles, authorities, and influential individuals in social networks [1,25], construct-
ing multidimensional representation for further visualization [31], and so on.
Such social network analysis uses rich network information [9] which consists
of both structural information (i.e., network topology) and textual information
associated to network nodes and edges. From the perspective of analyzing social
networks to acquire useful knowledge, the more detailed data a released network
contains, the more useful the network is for analysis purposes.

However, a big issue in publishing social network data is that we may expose
individuals’ private or sensitive information (e.g., salary, disease, connection to
a specific group of people). A simple method used in the past, to address this
issue, is to replace the true identity of the individuals in a network with random
pseudo-identifiers before releasing the data. However, Backstrom et al. [2] and
Narayanan et al. |28] have shown that this simple approach cannot prevent the
identification of individuals when adversaries have background knowledge about
the network. To protect people’s privacy from different types of attacks from
adversaries, various data anonymization methodologies [191/24,29//331/40,41] have
been proposed. Among these, the K-anonymity technique (originally introduced
in [33]) has been used to protect individuals by ensuring that each individual is
indistinguishable from at least K-1 other individuals.

Several approaches have been proposed to achieve K-anonymity of indi-
viduals in social networks for preventing attacks using various topological in-
formation, such as node degrees |20, node neighborhood [14}/41], embedding
subgraphs [7], or multiple structural information [43]. However, very few tech-
niques (such as [22}38,[39]) exist to anonymize a network considering both the
topological structure and the textual information of the network. And, even these
works have limitations, as we will illustrate in Section [2}

Figure 1: (a) the social network with two edge labels (the relation creation time
and relation type where ¢, [, f represents friends from classes, friends leisure
activities, and general friends respectively); (b) the 2-anonymity social network
w.r.t. degree; (c) the 2-anonymity network w.r.t. degree and edge labels

The use of both topological (structure of the network) and textual infor-



mation (labels on the edges) is very common to analyze social ties [6}[9}/12].
For instance, to analyze the evolution of relationships in a network over time,
we need to count the newly built relationships in different time periods (e.g.,
months, years, etc.) using a longitudinal dataset. However, such analysis may
result in a higher probability of exposure of an individual’s identity [9]. For
example, given the network shown in Figure a)7 if an adversary knows that
Alice added only one friend before 2007, it can be inferred from the network
that vg is Alice.

In this paper, we study the problem of protecting a node’s identity [20443]
by preventing attacks from an adversary who is armed with both structural
(in particular node degrees) and textual (edge labels) information, and propose
efficient techniques, which build upon the set-enumeration tree structure, for
identity protection.

1.1 Problem and Challenges

We introduce the problem of ST K-anonymization, which seeks to anonymize
graph nodes and edges in a network graph, such that each node u in the graph
is indistinguishable from K-1 other nodes in the graph, i.e., the probability of
accurately identifying u is at most %, even for an adversary armed with the
degree of nodes in the graph and labels information. Structural and textual K-
anonymity of a node u in the graph implies that it is indistinguishable from K-1
other nodes in the networks not only in the degree, but also in the nature of the
edge labels. For instance, in Figure (c), v9 and vy are strictly indistinguishable
from each other since they are both degree-2 nodes and have edge labels ((2006-
2007,c), (2008,f)). We denote such a network anonymization as Structural and
Textual K-anonymization and abbreviate it as ST K-anonymization.

Our problem does not consider preventing attacks using only textual in-
formation associated to graph nodes. It is because traditional techniques on
anonymizing tabular data (i.e., microdata) [16}/18,33] can be directly applied
by (1) treating each node’s information as a row in a table and (2) applying
attribute generalization schemes [16}/18,[33] which treat all values for a given at-
tribute collectively (i.e., all values are generalized using the same unique domain
generalization strategy).

In a social network graph, a node u and the labels on its adjacent edges
are analogous to a row and cell values in tabular data. Theoretically, the K-
anonymity techniques in tabular data can be applied to social networks. How-
ever, there are a couple of challenges.

Challenge 1: ST K-anonymization of social networks is different from K-
anonymizing microdata in that (1) each entity for anonymization in microdata
is one tuple with a fixed number (|QI|, quasi-identifier) of Valuesﬂ while each
entity for anonymization in social networks is a node with different (d(v), degree
of v) number of value lists (edge labels), (2) the value of one tuple in microdata
is not correlated with other tuples; on the other hand, each node’s edge labels

LA table with missing values is an exception.



in social network graphs are connected (hence correlated) with other nodes.
Because the nodes in a network graph are correlated, directly applying tabu-
lar data anonymization techniques to anonymize a node may change the edge
labels on its edges. Such changes of one node’s edge label(s) may destroy the
anonymization property of adjacent nodes which may be already anonymized.
Thus, such anonymization can cause a back-propagation effect. For instance,
the label changes of one edge v; - v; to achieve the anonymization of node v;
may automatically cause a change for v;, which has already been anonymized.
These two major differences make ST K-anonymization a much more compli-
cated problem than the problem of K-anonymizing microdata.

Challenge 2: The second challenge comes from the exponential number of
ways in which edge labels can be anonymized. This search space explosion is
analogous to that in the cell-based approach to anonymize microdata, which has
been proved to be NP-hard [27]. In our problem setting, the back-propagation
during anonymization makes things worse. In fact, Chester et al. [8] have proved
that it is intractable to optimally K-anonymizing the label sequences of edge-
labeled graphs. Existing techniques based on topological structures [7,|14}20,
42] do not process the correlated edge labels; approaches on tabular textual
information [16,33] anonymize text, but do not deal with the text correlation
and possible back-propagation. So, these methods cannot be directly used to
achieve the ST K-anonymization of a network in our problem setting.

To achieve the ST K-anonymity of a network, the questions to answer are
(1) how to choose which K nodes to be anonymized as a group and (2) how to
anonymize these nodes when considering both node degrees and edge labels.

1.2 Contributions
The major contributions of this paper are:

e We formally define the problem of ST K-anonymization based on different
definitions of node ST-equivalence.

e We present a two-phase approach to achieve ST K-anonymity of social
networks. In the first phase, two heuristic algorithms are proposed to get
degree anonymized graph.

e In the second phase, to avoid the problem of back-propagation during
anonymization, we present a set-enumeration tree |16] based approach
to achieve textual anonymity. In this phase, we further introduce three
pruning strategies to improve the baseline approach.

e We conduct extensive experiments on real datasets and synthetic datasets
to illustrate the performance of our presented techniques.

The rest of the paper is organized as follows. Section 2] reviews related
work in the literature. Section [3] formally defines the ST K-anonymity problem
and related terminologies. Section [4] presents our two-phase approach to ST K-
anonymize a social network. Section [5| shows the experimental results of our
proposed approaches. Finally, Section [6] concludes this paper.



2 Related Work

The K-anonymity technique [16}18,27,33] is one of the pioneering and widely
accepted scheme in the community of privacy protection of microdata (i.e.,
tabular data) where each row represents one entity’s information. However, as
discussed in the previous section, the approaches to achieve K-anonymity of
microdata do not directly deal with correlation of tuple values.

In recent years, many techniques have been proposed to protect different
types of sensitive information in social networks. According to the information
that the privacy-protection techniques target to protect, these works fall into
different categories: protecting nodes’ identities [4.(7L(15]20}23.[26}34-36.[3638,
39,141,|42], nodes’ sensitive labels [32], sensitive links [11}/21,37,/40], and more
complicated information [4}(9,/10L[13].

Our work falls into the category of node identity protection. So, we discuss
the research in this area in more details. Several related work deal with attacks
utilizing structural knowledge of vertices for identity disclosure, a concept, which
was first introduced by Hay et al. in [15]. Several works [15,/20,23,36] have
studied the K-degree generalization scheme, in which a node in the anonymized
graph has the same degree has at least K-1 nodes in the graph. In these works,
the adversaries are assumed to have knowledge of the node degrees. Zhou et
al. in [41] and [42] considered the scenario where an adversary knows the 1-
neighborhood structure of nodes (i.e., the structure formed by a node and all
the nodes directly connected to this node). Their heuristic approach sorts graph
nodes by applying an encoding schema on all the nodes based on their neigh-
borhood information. Then, the nodes are anonymized in the sorted order.
Cheng et al. in [7] dealt with a more complex scenario where the neighborhood
structure over several hops is known to an adversary. Wu et al. [35] proposed a
K-symmetry model to achieve privacy protection of vertices against attacks us-
ing any possible structural knowledge. Tai et al. in [34] introduced the problem
of friendship attack, which may also lead to identity disclosure. In a friendship
attack, adversaries utilize the knowledge about the degrees of two vertices con-
nected by an edge. Bonchi et al. in [4] presented a novel information-theoretic
analysis on utilizing randomization techniques for identity obfuscation and show
that randomization techniques could meaningfully protect privacy while still
preserving characteristics of the original graph. Medforth and Wang [26] pro-
posed approaches to protect node privacy against attacks which use node degrees
in a sequence of published graphs. All the above works assume that adversaries
have knowledge about the topological structure. However, they do not consider
the textual information related to the graph edges that adversaries may use to
get private information.

Most recent works that define privacy based on textual information are |9}
38], and [39]. In 9], Cormode et al. introduced a new family of anonymization,
called (k,l)-groupings for bipartite graphs. In [39], Yuan et al. defined three
levels of user privacy protection by considering the node degree information
and the textual information associated with both nodes and edges. However, in
their problem definition, a small portion of the nodes fall into the category of



anonymization with respect to node degrees and edge labels. Thus, the process
of this category is not critical. Yuan and Chen in [38] studied the problem of
preventing node re-identification in social networks with weighted edges — the
weights can be treated as a special type of textual (edge) information. In their
work, a node was modeled to be a sequence of edge weights and two nodes
are considered equivalent if the distance between their edge weight sequences
is within a threshold. Liu and Yang [22] also studied the problem of graph
anonymization over edge-weighted social networks. In comparison, our problem
setting is more general in that we allow different types of text, instead of mere
numerical weights, to label edges and nodes.

3 Problem Definition

In this section, we introduce and formalize the problem of Structure and Text
aware K-anonymity (STK-anonymity). We also introduce the metrics that are
used to measure the anonymization quality.

3.1 Structure and Text Aware K-Anonymity

Definition 3.1 (Annotated graph) A graph G(V,E,A), where ECV xV,
and V' and E are alternatively represented as G.V and G.E respectively, is an
annotated graph, if A(.) applies textual information to every edge e € E.

The labels of each edge are from different domains Dy, -, D p|, and the
values in each domain can be numerical or categorical. These values may be
partitioned according to specific criteria (such as equal-width), or be organized
by experts as a hierarchy. In a hierarchy, we use [; < [; to denote that [; is
a descendent of I;. Figure |2 shows two hierarchies for temporal data and for
people’s relationships. In the temporal relationship, 2006 < [2006,2007].
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Figure 2: Generalization hierarchies for (a) temporal information and (b) peo-
ple’s relationships. The number associated with each node is generated by the
postorder traversal of the two trees.

Given a node v, its degree is denoted as d(v), which is the number of edges
connecting to v. Among the structural information (e.g., node degree, node



neighborhood) of social networks, the node degrees are the most general back-
ground information that an adversary can acquire.

The textual information of a d-degree node v, denoted as A(v), is represented
as a list of edge labels

A(vi) = (A(ein), - Aeiq))

where A(e;;) = (lij1,-lijz) (z is the number of edge labels for edge e;;) rep-
resents the textual information attached to the j-th edge of v;. For example,
Figure [I[a) shows an annotated graph. The structure information of node vy
is d(v2) = 2. The textual annotation of node vy is a list of its edge labels
A(v2)=((2007,¢c), (2008,1)).

Definition 3.2 (Labels Compatibility) A(v) = (A(en), -, A(eiq)) and
A(') = (A(e}y), -, A(el,)) are compatible iff there is a one-to-one mapping
[1: €ig <> €], from edges of v to edges of v" such that ¥ (l;,1}) s.t. l; € Aeir),l; €
A(egy), either I; <1} or 1} <1;.

Given the domain hierarchies in Figure (2006,c) is compatible with
([2006,2007],¢) since 2006 < [2006,2007] and ¢ < ¢. For the graph in Fig-
ure[T[b), A(vy) is compatible (although not the same) with A(vs) since A(v;) =
((2006, ¢), (2007, ¢), (2008, f)) and A(vs) = ((2006,c),(2007,c),(2008,1)),
where the labels for the first two edges are the same, and the labels for the
last edge are compatible (c stands for classmates and 1 stands for leisure).

Definition 3.3 (ST-equivalent) Given two vertices v and v’ in an annotated
graph G, v and v’ are Structural and Textual (ST)-equivalent, denoted as v~v',
iff (1) d(v) =d(v") and (2) A(v) and A(v") are compatible. When A(v) = A(v"),
v and v' are strictly ST-equivalent to each other. Otherwise, they are loosely
ST-equivalent.

Given the annotated graph in Figure[[(b), vy ~v3 (loosely) because their degrees
are the same and annotations are compatible. However, vs + vg although their
degrees are the same because their annotations are incompatible.

Definition 3.4 (STK-anonymity problem) Given a positive integer K and
an annotated graph G(V,E, A), the problem of Structure and Text (ST) aware
K -anonymity is to construct another annotated graph G'(V', E', A") with a map
function p such that

e Vo eV, I e V' sit. u(v) = v, where v can be null, referring to a
suppressed node;

e Vee E, 3¢ € E' s.t. u(e) =€, where €' can be null, referring to a sup-
pressed edge;

e Vv’ € V', there exists at least K-1 other nodes v" € V' sit. v" ~v'. Le.,
Vo' e VI, [{o" " ~u" 0" 0"} > K-1.



3.2 Information Loss

We use two operations widely to anonymize a graph G to another graph G’,
thus achieving ST K-anonymity. The first operation is edge addition, which
not only changes the node degree of graph G, but also adds new edge labels
(in particular, from null to a particular label). The second operation is the
modification of labels for existing edges. A widely accepted option to modify
labels is generalization [33], which changes a specific value to a more general
value by applying hierarchical domain knowledge.

During graph anonymization, the exact information in the original graph G
is changed (or more accurately, lost). So, a desired property is to lose as lit-
tle information as possible, to preserve the usability of the anonymized graph.
To measure the information loss in anonymizing a graph, intuitively, the edge
change for generalizing existing edge labels should incur less information loss
compared with adding a new edge to the new graph since the latter operation
also adds related edge labels. To achieve this intuitive intention, we define in-
formation loss at different levels (from finer granularity to coarser granularity)
for (1) individual edge label l;;, (2) edge annotation A(e;;), (3) node annota-
tion A(v;), and (4) the whole graph G. In our description, the generalization
hierarchies in Figure [2] are used for illustration purpose.

Given a domain D,, two elements /; and [} in domain D,, the information
loss in moving from I; to I} is

mhop(l;,1})
o(ls, 1) = hop(le i)
(:1)=""p,]

where mhop(l;,1}) is the number of edges in the shortest path from the tree node
with label /; to the tree node with label I] obtained by treating the generalization

hierarchy tree as an undirected graph and |- | represents the cardinality.
Information loss for generalizing a special label null to a specific label I in
the tree is
mhop(null, 1)
| D]

The generalization of the special label null to a node label in the generalization

graph can capture the structural information loss incurred in adding a new
edge or suppressing an existing edge. Intuitively, this cost should be more than
generalizing any existing edge label, which is bounded by %, where h, is the
height of the hierarchy tree. To characterize this information loss, we define this
to be a factor of the worst case cost %Lj (6 > 1). This definition guarantees the
desired property that the information loss of anonymizing existing edges should
be less than that of adding new edges.

With the information loss of generalizing each individual label, we define
the information loss of anonymizing edges and nodes by applying the following
rules.

The information loss of anonymizing one edge annotation A(e) to another

d(null,l) = ¢(1,null) =




edge annotation A’(e) is defined as

SO 1,10

HA(), () = ==

where A(e) = {l1,-,[jacey} and | -] is the cardinality. For example, the infor-
mation loss of anonymizing an edge label (2006, CS) to ([2006,2007],¢) is the

averaged cost from 2006 to [2006,2007] ({;) and from CS to ¢ (3). Le., it is
1141/7 _ 9

2 77
The information loss of anonymizing one annotation of a vertex A(v) to

another annotation A’(v) is the averaged cost of changing each label in A(v) to
the corresponding edge label in A’(v). Le.,

o TSI p(Ae), Alle))
$(A(v), A'(v)) = a0

Since A(v) encodes the node degree information, ¢(A(v), A’(v)) can capture
the information loss incurred due to changes in both node degrees and edge
labels.

Definition 3.5 (Info. loss of graph anonymization) The information loss
of STK -anonymizing G to G' is

#G,G)= 3 ¢(A(w) A(v))) (1)

vieV,vi=p(vi)

Definition 3.6 (Optimal solution) The optimal anonymization solution
solopt for G is defined as

$0lopt = {s0l;|d(G, soly,) = min;(¢(G, sol;))}

4 Solution framework

As we discuss in Section [I} the major challenges in ST K-anonymizing social
networks come from the correlation between edge labels and the large number
of possible candidates. To address these challenges, we propose a two-phase
solution framework to achieve the ST K-anonymity of a social network.

Before introducing our solution framework, we explain in more detail the
anonymization back-propagation issue caused by edge correlations if a naive
approach is applied to anonymize graphs. In particular, this naive approach
first partitions graph nodes into groups so that the nodes in one group have
similar A(:) values. Then, it anonymizes edge labels for the nodes in each
group. To anonymize the nodes in one group, changes are needed in the edge
labels (through generalization) to make them loosely or strictly equivalent. The
change to one node’s edge label can propagate to its neighbor nodes, which prop-
agate this change further. Inevitably, such changes can propagate back (back-
propagation) to the already anonymized nodes and trigger repeated anonymiza-
tion.



Example 4.1 To achieve strict ST2-anonymity of the network in Figure (b),
the nodes are partitioned into three groups: {vi, vs} (degree 3), {va, v4}
(degree 2), and {vs, ve} (degree 1). Let us first anonymize v and vs
by changing the edge labels between vy and vz to (2008, f). After this
change, the edge labels for this group of nodes are the same A(vi) =
A(vs) = ((2006,¢), (2007, ¢), (2008, f)). Next, we move to the group {va,vs}
to anonymize the edge labels A(vy) = ((2007,¢), (2008, f)) and A(vy) =
((2006, ¢), (2008, f)). Since 2006 and 2007 can be generalized to the range
[2006,2007], we get A(vy) = A(vys) = (([2006,2007],c), (2008, f)). This change
1s reflected in labels of edges between vy and vy and between vs and v4. As
a result, this edge label change propagates back to vi and vs. This propaga-
tion, however, results in the already anonymized v1 and vs not satisfying ST2-
anonymization anymore (with A(vy) = ((2006,c¢), ([2006,2007],c), (2008, f))
A(vsz) = ((2007,¢),([2006,2007],¢), (2008, f)). Thus, they need to be re-
anonymized to get the anonymized network shown in Figure (c) In this exam-
ple, the anonymization of {ve,vs} is propagated back to the already anonymized
node group {vi,vs}. When the network is larger, the effect of such back-
propagation may be worse.

We design a two-phase approach to alleviate the issue of anonymization back-
propagation of edge labels. In our approach, the first phase aims to achieve
edge degree anonymization of the given graph. This phase addresses the edge
correlation issue at a much simpler level (on node degrees). The second phase
anonymizes edge labels of graphs by utilizing a global paradigm to avoid the
back-propagation of edge label changes. This framework works for both strict
and loose ST-equivalence definition.

4.1 Degree anonymization

The first phase to achieve ST K-anonymity of a graph is to perform edge degree
anonymization. The purpose of this step is to add as few edges as possible to the
graph G to create graph G’ such that each node in G’ has the same degree as at
least K-1 other nodes. Intuitively, to add few edges to GG, the nodes with similar
original node degrees should be anonymized to have the same degree (i.e., belong
to an anonymized group). Based on this intuition, the degree anonymization
approach first sorts nodes in the descending order of their original node degrees
such that nodes with similar degrees are closer to each other. We use Sy (listed
in Table [1)) to denote this sorted node degree sequence. From S , we introduce
two heuristics to achieve the degree anonymization.

4.1.1 Heuristic based on dynamic programming

Liu et al. in |20] presented a dynamic programming based approach to achieve
degree anonymization. This approach first applies a dynamic programming pro-
cess on the sorted node degree sequence S; to generate another degree sequence
S,. This new degree sequence has two properties. First, each node is guaranteed
to be K-anonymous in degree (i.e., each distinct node degree occurs at least K



Sa The sequence with sorted node degrees for the original graph G. S; =
(Sa(v1),-, Sa(vn))

Sa The sequence with node degrees for an anonymized graph G’ where the order
of nodes are the same to that for Sq. Sq = (Sa(v1),--, Sa(vn))

ASy | The sequence of newly added node degrees when anonymizing G to G'.
ASg=854-84=(Sq(v1)=Saq(v1), -, Sa(vn)—Sa(vn))

AV | The set of nodes with positive ASy(v).

Table 1: Notations to describe node-degree sequences

times in §d). Second, it has minimal number of added degrees among all pos-
sible K-anonymous degree sequences. Thus, it incurs the least information loss
from G. From Sg, a new graph G’ can be constructed such that G(E) € G/(E)
(i.e., G’ covers the original graph G) and the nodes of G’ have the new degree
sequence Sj.

However, there may not exist a proper valid graph for degree sequence Sy
When this happens, S, is said to be unrealizable.

We identified that S, is unrealizable in two situations. In the first situation,
the sum of the newly added degrees (X1 AS4(v;)) is an odd number. This is
possible since the basic dynamic programming routine uses node degree, instead
of an edge which contributes two to node degrees, as a basic unit in its operation.
However, the odd total node degree cannot come from a valid graph which
always has even-number of node degrees (2 x |E|). Hence, when Y1 ; ASy(v;)
is odd, S, is unrealizable. In the second situation, there exists some node v;
(e AV) for which we cannot create ASy(v;) new edges. It is because v; is
already connected to some nodes in AV, and the number of nodes in AV which
do not have an edge to v; is smaller than ASy(v;). To create AS;(v;) edges, the
constructed graph G’ needs to have multiple edges between some nodes, which
is improper?l To construct G from unrealizable Sy, [20] introduced a probing
scheme to add random degree noise to Sy and repeatedly run the dynamic
programming routine until it can find a solution (a realizable S;). However,
such probing can be very expensive (which is verified by our experiments).

We present a more efficient heuristic method DP-heuristic (Figure to
achieve degree anonymization. This heuristic utilizes the dynamic programming
routine as the first step to get the initial node groups for degree anonymization.
After the dynamic programming, DP-heuristic creates as many new edges as
possible for nodes with positive ASy (Step . After Step if a node v still
has positive ASy(v), it means we cannot add any more edges between v and
any other nodes in AV. We denote such nodes as unrealizable nodes. When
there are unrealizable nodes, DP-heuristic finds other nodes that are not in AV
to create edges for these unrealizable nodes (Step .

Step (D] chooses a group which is already anonymized and increments the
degree of every node in this group by one. In particular, when ¥, ASy(v;)
is odd, a group with odd number of nodes is chosen. Theorem which will
be explained shortly, guarantees that we can find such a group. On the other
hand, when ¥ ; ASg(v;) is even, we either choose a group with even number

2Multiple edges are combined to one topological edge with multiple edge labels.



DP-heuristic (G, Sq4, K)
1. Sq = DP(S4, K)
2. ASq=5S4-Sa
3. AV = nodes with AS4(v) >0
4. While (AV is not empty)

(a) For (each node v in AV)
i. Randomly pick a node v; from AV such that (v,v;) is not an existing
edge
ii. Add an edge between v and v; to G
iii. Decrease one from both ASy(v) and ASg(v;)
iv. If ASg(v) =0, remove v from AV
v. If AS4(vj) =0, remove v; from AV
(b) If AV is not empty
i. Choose a proper group g with anonymized nodes

ii. For every u € g, increment AS4(u) by one and put these nodes into
AV

5. Return G;

Figure 3: DP-heuristic to anonymize edge degrees based on dynamic program-
ming

of nodes, or we choose two groups with odd number of nodes. With either of
the above processes, Y.;2; ASq(v;) after Step |4b| will be even. This is to avoid
the first unrealizable situation for Sy.

Theorem 4.1 In anonymizing Sq to sequence Sy, if Yy ASy(v;) is odd, there
erists a node group in Sq with odd number of nodes.

Proof Sketch: Let there be gn anonymized groups in G’, and the sum of node
degrees in each group g; be d(g;). Then, we have Y7, Sy(v;) = I d(g;). We
want to show that when Y, gd(vi) is odd, there exists an anonymized node
group g; such that the number of nodes in it (|g;.V]) is odd.

First, since ¥, Sq(v;) = 9" d(g;), there must exist at least one g; such
that d(g;) is odd when ¥, Sq(v;) is odd. Otherwise (i.e., every d(g;) is even),

9" d(g;) must be even.

Second, if d(g;) is odd for an anonymized node group g;, the number of nodes
|g;-V| in this group is odd. This comes from the property of an anonymized
node group g;, for which all the nodes share the same degree d(vy,). Ie.,
d(g;) = d(vg;) *19:.V]. When d(vg,) is odd, then both the node degree d(vy,)
and |g;.V| are odd. m

Let us use the graph in Figure a) to illustrate this phase. The edge degrees
are: 3 22 1 1 1 for vertexes v; vz vo vg4 vs Vg in sequence. To achieve 2-
anonymity of node degrees, we add one edge between vz and v4. The new node
degree sequence becomes 3 3 2 2 1 1 and it corresponds to the new graph G’ in

Figure [I|b).



Time complexity: The time complexity of the DP-heuristic is determined
by the dynamic programming routine (Step and the construction of the graph
G’ (Step[d). The dynamic programming routine’s complexity is O(nK ) as shown
in [20]. The construction of the graph G’ has worst case complexity O(n>K?),
which is elaborated in detail here.

The graph reconstruction (Step from the initial Sq needs time in
O(|AV?) because it examines every node in AV, and for each node in AV,
it adds at most |AV|-1 edges connecting to other nodes in AV. The factor
|AV] in the worst case is n—|4 ]| . In particular, the algorithm can generate
at most [%J anonymization groups when each group has the minimum number
of nodes of K. For each group, all the node degrees need to be changed to
be the same as the first node’s degree. Thus, in the worst case, the degrees of
all nodes except the first one in each group need to be updated. In this worse
case, |AV| =n—-|z]. So, the construction of the initial Sy has the worst-case
complexity O(n?). However, in real applications, the number of edges that need
to be added (i.e., ASy(v)) for each node in AV is much smaller than n, and the
algorithm shows linear (to n) performance.

When the initial §d is unrealizable, the construction of G’ needs more iter-
ations. This leads to time complexity O(I|AV|?). Different from the first iter-
ation, in these later iterations AV is restricted to contain nodes in one or two
anonymization groups, so |AV| is bounded by 2K. In addition, the number of it-
erations is bounded by n?, which is the worst case that the graph is anonymized
to a complete one. So, the worst-case complexity is O(n?K?). Nevertheless, in
real applications, we just need to add one edge (not |AV| edges) for every node
newly added to AV. So, the algorithm runs linear to |[AV/|. In addition, the
algorithm can stop before reaching a complete graph, thus it needs much less
iterations. In our experiments, the algorithm shows linear performance in both
n and K, which is better than the worst case.

4.1.2 Heuristic based on greedy node grouping

DP-heuristic, like DP, may suffer from the repeated iterations to construct
G if the initial Sy is unrealizable. We propose another node grouping based
approach, Group-heuristic. This algorithm is shown in Figure In this al-
gorithm, the sorted nodes are first partitioned into different groups such that
each group (except the last one) consists of K nodes. Then, all the groups are
traversed and anonymized (Step . In this step, when anonymizing the nodes
in one group, the degrees of each node should be increased to be the same as the
first node’s degree dy. Once the degrees of a group’s nodes are the same, this
group is denoted as anonymized, and all its nodes are marked as “anonymized”
(Step 24).

The major operation in anonymizing a group’s node is to add edges for ev-
ery node v to make its degree the same as dy (Step . To add an edge for
v, the algorithm chooses another unanonymized node (Step . In case
there are insufficient number of unanonymized nodes to create edges for v,
anonymized nodes are randomly selected to create edges for v. Accordingly,



these anonymized nodes’ groups are marked as unanonymized (for further re-
anonymization).

Group-heuristic (ONodes, K)
/*ONodes: nodes sorted in descending order of their degrees*/

1. Partition all nodes in ONodes into groups and mark each group as
unanonymized
2. For each unanonymized group g

(a) do = degree of the first node in this group
(b) For each node v in g such that Sq(v)<do

i. If there are do—Sq¢(v) unanonymized nodes in V, randomly choose
do—S4(v) nodes and create edges between v and these nodes

ii. Otherwise (i.e., there are insufficient number of unanonymized nodes
to create edges for v)
— Randomly select anonymized nodes v’ to create edges between v and
these nodes
— Mark the group that each v’ belongs to as unanonymized

(¢) Mark every node in g as anonymized

Figure 4: Group-heuristic to anonymize edge degrees based on node grouping

This approach is simple and easy to deploy. However, it may not generate
the best anonymization solution. For instance, given the sequence of ordered
node degrees 55522 21 1 1 (for nodes v; to vy respectively) and we want
to get a 2-anonymized graph. The best solution that can be returned from
Group-heuristic (by adding 3 edges: between vy and v7, v4 and vg, v4 and vg) is:
555522222, where the nodes in the same anonymized group is underlined
together. However, there exists a better 2-anonymity degree sequence, which
does not need to add any edge: 555222111.

Time complexity: This algorithm has the worst case complexity O(n?).
In particular, for each node v we need to add dy — Sy(v) edges where dj is the
degree of the first node in v’s group. In the worst case, the anonymized nodes
need to be re-anonymized multiple times until its edge number reaches n — 1,
when the anonymized graph becomes a complete graph. Thus, the worst case
complexity is O(n?).

4.2 Edge label anonymization

The second phase is edge label anonymization. In this phase, for each group of
nodes with the same degrees, the nodes’ edge labels are generalized such that
they are compatible and the information loss caused by the generalization is min-
imal. Formally, given a group g of nodes {v;1,++, v, } (K <x<2K-1) with degree
d, we need to calculate a new annotation A’(-) such that ¥7_; #(A(vi;), A" (viz))
is minimal when this new annotation is applied to all the edges of nodes in g.
Le., there does not exist another annotation A” with ¥7_; ¢(A(vi;), A" (vij)) <

Yi-1 0(A(vij), A'(vig))-



The problem of getting the optimal anonymization of edge labels for all the
nodes in each group is extremely expensive. In particular, for every edge label
of one node v;, we need to find its mapping edge labels from other nodes in the
same group. Theorem [£.2] shows that the exhaustive examination of edge label
mappings is of complexity O((d!)¥), which is prohibitively expensive even for
small d and K.

Theorem 4.2 Given a group with x nodes, each of which has node degree d,
the total number of combinations of mapping all edge labels for all the nodes in
this group is (d!)* 1.

Proof Sketch: Let the x nodes in a group be {vy,ve, -, v,} and let the
annotations be as following.

A(vr) = (A(enn), A(e12), -, A(e1a))
A(vz) = (A(ea1), A(ea2), -+, A(eaa))

A(Ua:) = (A(€w1)7 A(ezZ)> ) A(ewd))

To get the minimum annotation generalization for A(vy), -A(v,) in an ex-
haustive manner, we need to create mappings between all possible edge labels.
For A(v1)’s first edge labels A(e11), we can choose one edge from A(vs) to map
with it. The number of edge choices from A(vs) is (f) Similarly, to choose

an edge from A(v,) to map with A(e;1) we also have (f) choices. Overall,

the total number of choices to map A(e1) is (‘li)m_1 = d*!. Then, for A(vi)’s
second edge, we have (d — 1)*"! edge mapping choices. Similarly, for the last
edge label of A(v1), we have 127! choice. In total, the number of edge mapping
combinations is d*~1 - (d - 1)*...1771 = (d!)*~L. ]

The above analysis shows that it is expensive to anonymize the edge labels
of nodes in a group. In addition, as we have shown in the beginning of this
section, if the edge labels of nodes are anonymized group by group, we need to
consider the anonymization back-propagation issue caused by the correlation of
edge labels. So, the method of anonymizing edge labels in a similar manner as
that in Group-heuristic is not applicable.

The critical part to anonymize the edge labels of a graph is to find an anno-
tation A’ using which the graph can be anonymized with minimal information
loss. A’ is a many to one mapping by applying an anonymization rule to ev-
ery distinct edge label el and generalizing it to another label elﬁ We use the
source and target edge label set to denote the set of els and the set of A’(el)s
respectively.

We present a novel approach to anonymize graph edge labels by utilizing a
global scheme over all the possible target edge label sets. This approach does

3In anonymizing microdata, the cell based anonymization strategy [27] uses a many to
many mapping to perform the anonymization. I.e., the same label el may be generalized to
multiple other labels. In this work, we do not consider the anonymization solutions with such
finer granularities.



not start from the graph’s node groups one by one. Instead, it starts from the
edge labels’ generalization hierarchies and examines all the target label sets for
the graph.

4.2.1 Anonymizing graph edge labels with one global candidate

An annotation’s target label set Cygy = {l1,--+,1,} is defined over the values from
all the domains’ value hierarchies. Every Cy4 implicitly includes the root values
of all the domain hierarchies. Each I; explicitly existing in C4 is a non-root
value in its domain value hierarchy. Given a set of domain value hierarchies and
an annotation target label set Ct4 defined on them, the annotation rule A’ is
derived as follows: every edge label el in graph G is generalized to the label el’
in Cig4¢, which is the lowest ancestor label of el (including itself) in its domain
hierarchy. This annotation derivation rule generates a many to one mapping
from target label sets to annotations. That is, for each Cyg, there is only one
corresponding annotation A’. For simplicity, we call the target label set of an
annotation as annotation target. Without confusion, we interchangeably use
annotation target and annotation in later descriptions.

Example 4.2 (Target label set and annotations) Given the two domain hi-
erarchies in Figure[d Consider the derivation of annotation rules for the target label
set Cige1 = {[2006,2007], c(lassmate)}. Given the edge label el=(2006,c) for the edge
between v1 and ve in Figure (a), the annotation rule for el to Cige1 is to (1) generalize
2006 to [2006,2007]; because [2006,2007] is the lowest ancestor for 2006 in Cige1, and
(2) generalize c to itself; because c is the lowest ancestor for ¢ in Cige.

For one annotation Cig, the algorithm AnonyOneCand (in Figure [5)
presents a global-scheme based procedure to anonymize the edge labels of graph
G', which is already K-anonymized in degree. If G’ satisfies ST K-anonymity
condition after edge label anonymization using the annotation for Cig, Cigs is
treated as an annotation solution.

This global-scheme based algorithm consists of two major steps. First, it
converts all the edge labels in graph G’ using the candidate Cyy = {l1,--, 1y}
(Step [2)). Then (Step [3), after the edge label conversion, graph G’ is exam-
ined for its ST K-anonymity. If G’ is ST K-anonymized, the information loss is
calculated.

In this algorithm, all the nodes are anonymized using a global annotation
candidate Cyg. Once Cyy is fixed, there is only one way to anonymize the
graph. Thus, with this method, we can avoid anonymization propagation.

Example 4.3 We use an example to illustrate this process.  Given the
graph in Figure (b), and assume that its edge labels come from two do-
mains with the value generalization hierarchies in Figure [§  From the do-
main value generalization hierarchies, we can get one anonymization candi-
date C = {[2006,2007],2008, c(lassmate)}. Implicitly, this candidate repre-
sents Cimp = ([2006,2007],2008,[2006,2011], ¢, f(riend)) where [2006,2011]
and f(riend) do mot explicitly appear in C because they are the root values



AnonyOneCand (G, G', K, Ci4t)
1. ¢(G,G") =0;
2. Convert all the edge labels in graph G’ to labels in annotation target Cig¢, the
conversion rules are put into A’
3. For each group g in G’ whose nodes are already K-anonymized in degree
(a) anonymized = examine the edge label anonymity of nodes in g
(b) if anonymized = false, return (-1)
(c) Else
i. Calculate the information loss of each node v in this group
P((A(v), A'(v))
ii. ¢(G,G")=¢(G,G")+X,cq #(A(v), A'(v)))
4. return ¢(G,G");

Figure 5: Edge label anonymization using one candidate target Cig:

of two hierarchies. When this candidate is applied to the graph in Figure (b),
we need to convert the edge labels:

e The edge label (2006, c) between vy and vg is converted to ([2006,2007],c)
because [2006,2007] is the lowest ancestor of 2006 in C' and c is the lowest
ancestor of itself.

e The edge label (2008, (eisure)) between vy and vz is converted to (2008, f)
because 2008 is the lowest ancestor of itself and f is the lowest ancestor
of .

e In a similar way, all the edge labels of Figure (b) can be converted and
we can get the graph in Figure (c)

To check the anonymity of a group of nodes in Step [3a] the algorithm ran-
domly chooses one node in the group (say v1) to probe other v;s by checking
whether A’(v1) and A’(v;) are compatible. If A’(v1) is compatible with every
A’(v;), then this group of nodes are edge label anonymized.

Time complexity: The worst case time complexity of this step is O(n?)
where n is the number of nodes in G’. In particular, the major computation
comes from two parts. The first part is the edge label conversion using the
global candidate Cyg. Obviously, this calculation is in O(|E’|) where |E'| is the
number of edges in G'. In the worst case when G’ is a complete graph (i.e.,
|E’|=n(n - 1)), this complexity is O(n?). The second part of the calculation
is to check whether each group of nodes is anonymized. Let a group g contain
|g.V| nodes (K < |g.V| < 2K) and d be the degree of each node in this group.
The edge anonymity checking of each group then has complexity O(dK). Since
there are at most 7 groups, this part of calculation would be O(dn). In the
worst case, i.e., d is n — 1, which is very rare, this part has O(n?) complexity.
Thus, the overall worst case computation is in O(n?).



4.2.2 Get optimal edge label anonymization

The above described component anonymizes a graph’s edge labels with one an-
notation target. With this component, we can examine all the possible annota-
tion targets to calculate the best anonymization solution (i.e., new annotations).
In this section, we present our approach to traverse all the possible annotation
targets. The annotation targets are enumerations of all the value combinations
from all the domains. To efficiently manage this large space of annotation tar-
gets, we utilize the technique of set-enumeration tree, which was shown to be
very good in representing the set of combined domain values [16,30]. Each node
in a set-enumeration tree represents the target label set of one annotation candi-
date Clyy¢. With this target label set, we can create an annotation A’ to convert
the original edge labels of a graph to labels represented by this node Ci4: using
the procedure described in the previous subsection. All the possible target label
sets of annotation candidates are enumerated through the set-enumeration tree.
The set-enumeration tree for the annotation targets can be constructed by
applying a similar technique as that in [16]. To start with, all the domains
are ordered sequentially and each domain is assigned with a series of sequential
numbers. In particular, let D; (i > 1) be the i-th domain with m; partitions or
m; hierarchical nodes. The sequential numbers assigned to one domain D; are
Zf;ll mp+1,-, Zle my. Inside one domain, the sequential numbers are assigned
to its values according to a total ordering of these values. When the values of
a domain do not form any hierarchy, they are ordered in their partition values
(e.g., alphabetically). When these values form a hierarchy, the hierarchy is
traversed either breath-first or depth-first to acquire a total ordering.
Example 4.4 Given the two domains in Figure[d, the first domain is assigned
with sequential numbers 1,---,11, and the second domain is assigned with se-
quential numbers 12,---,18. For each domain, each value’s sequential number,
which is denoted in the figure, follows the post-order traversal of the hierarchy.

EdgeAnony(G’, G’7 K, Dl, Tty D|D|)
/* G' is K-degree anonymized */
1. T = set-enumeration tree built from domains D1,-+, D|p|
2. Solution Gopr = @ with cost (G, Gopt) = +00
3. For each node vt € T (pre-order traversal)
(a) ¢(G,G") = AnonyOneCand (G, G', K, L(vt))
(b) If ¢(G,G") <0, continue; /* not a solution*/
(c) If p(G,G") < ¢(G,Gopt), set Gopt = G’

4. Return Gop: and vt corresponding to Gope

Figure 6: Framework for edge label anonymization

Figure [6] shows the algorithm to perform edge label anonymization by
utilizing the set-enumeration tree. This algorithm first constructs the set-
enumeration tree for all the candidate targets. Then, it traverses the set-
enumeration tree and anonymizes the edge labels using each tree node wvt,



whose corresponding label set is L(vt). In particular, for each node in the
set-enumeration tree, the algorithm AnonyOneCand in Figure [5| is applied to
calculate the information loss and the annotation of anonymizing the edge la-
bels with this annotation target vt. Among all the anonymization solution (with
non-negative information loss), the one with the minimum cost is the final so-
lution.

Optimality analysis. The above described approach returns the optimal
solution of STK-anonymizing a graph g which is degree-anonymized. Let G’ be
an optimal solution, and let the set of its distinct edge labels be EL(G"). Since
the set-enumeration tree enumerates all the possible value combinations over the
symbols in the hierarchical trees ¥ = X pyU--UXp,, , the labels in EL(G") must
belong to one node in the set-enumeration tree. The above described procedure
examines every possible target set. Thus, it returns the optimal edge label
anonymization solution.

Time Complexity: Let |T| be the number of nodes in the set-enumeration
tree, the algorithm EdgeAnony needs to examine all these T nodes. Let m; be
the number of elements (or values) for domain D; and m be the total number of
elements in all the domains for a graph (i.e., m = ¥ m;). The nodes in the set-
enumeration tree enumerates all the value combinations from all the domains.
Then the number of nodes |T'| = 2™. As we discussed in the previous section, to
examine the ST K anonymity of one node, the worst case anonymization cost
is O(n?). So, the overall worst case cost of the edge degree anonymization is
0(2mn?).

4.3 Pruning strategies

The number of nodes in a set-enumeration tree is 2™ where m is the number of
domain labels. So, it is very expensive (thus impractical) to run this optimal
edge label anonymization by examining each annotation target. In this section,
we present two properties of the set-enumeration tree. Based on these proper-
ties, we introduce three pruning strategies to improve the running efficiency.

Property 4.1 (Downward closure property) Given a set-enumeration
tree, if a node vt in this tree does not generate an anonymization solution, all
the nodes in vt’s subtree cannot generate any solution either.

This property is directly derived from the construction of the set-
enumeration tree. For a node vt in a set-enumeration tree, its child node has
one more label than it. Recall that L(vt) is the set of labels corresponding
to the set-enumeration tree node vt. Let vt. refer to a child node of vt, then
L(vt.) = L(vt) ul;, where l; is a new label that does not exist in L(vt). If
the lowest ancestor of I; in L(vt.) is I, then any edge label in the subtree of
I; (in its domain hierarchical tree) is converted to I; but not the more general
l;. Thus, vt’s child node vt is more specific than node vt. This more specific
conversion rule ensures that there exists no anonymized solution with the use
of the subtrees.



Pruning strategy 1: Property shows that when a list of labels (rep-
resenting a target label set) does not generate an anonymous solution, then
another label list containing more labels than the current list cannot gener-
ate any solution. This property can be directly applied to prune the subtree
of a node vt if vt does not generate a solution. So, when traversing the set-
enumeration tree, if a node vt cannot generate an anonymization solution, all
its children nodes do not need to be examined and can be safely pruned.

Pruning strategy 2: This pruning strategy is also based on the downward
closure property. Let us call a node vt a solution node when it is able to
generate an anonymization solution, which may not be optimal. Given solution
node vt, all the other nodes {vt'|L(vt")c L(vt)} should be solution nodes as well.
However, such solution nodes will not improve vt’s solution (i.e., anonymize the
graph with less information loss). Because of this, when traversing the set-
enumeration tree, we can prune a node if its label set is a subset of a solution
node’s label set.

Property 4.2 (Encompassment property) Given the set-enumeration tree
nodes vt and vt" with L(vt) = {11, 10} and L(vt") = {- 11, gy}, If
I satisfies the condition that subtree(l) = UL, subtree(l;), then vt is redundant
with respect to vt'. Here, subtree(l;) represents all the values in l;’s subtree
(including l; in its domain hierarchy.

The condition subtree(l) = uf_,subtree(l;) means that a label I and its de-
scendant labels in its domain hierarchy appear together in the label list of the
tree node vt. In addition, I’s descendant labels can cover all the leaf nodes of
I’s subtree. During the process of the algorithm, each original graph edge label
is converted to only one general label, which is its lowest common ancestor.
Because I’s descendant labels can cover all the leaf nodes of I’s subtree, a leaf
value in [’s subtree is converted to {; instead of [. This makes the annotation
for L(vt) the same to the annotation for L(wvt"). Thus, vt is redundant.

Pruning strategy 3: This pruning strategy is based on Property[£.2} When
examining the set-enumeration tree nodes, we first check the relationship of the
labels represented by the tree nodes. When a tree node satisfies the condition
in this property, this node and all its subtree nodes can be pruned. The added
computation for this strategy is the checking of edge label relationships. To
improve the efficiency of this computation, we can apply strategies for encoding
tree nodes in the implementation.

5 Experiments

This section presents the experimental results on the performance of our pro-
posed techniques. The approaches are implemented using C/C++. All the
experiments were run on a Linux server (Ubuntu 11.04) with an Intel Xeon(R)
CPU Eb5645 (@2.40GHz) and 4G RAM.

Both real datasets (Enron, arXiv, DBLP) and synthetic datasets are used
in the experiments. The Enron dataset is from the email communications in a
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Figure 8: Degree anonymization: arXiv dataset

company (www.cs.cmu.edu/ enron/). It is a representative small dataset used
in several other social network analysis and anonymization works [15[20]. This
dataset consists of 150 nodes (representing users) and 1180 edges (representing
user communications) abstracted from the original ~17K message exchanges.
The arXiv dataset (http://snap.stanford.edu/data/ca-GrQc.html) is a
collaboration network on general relativity and quantum cosmology from Stan-
ford. This dataset initially contained 5242 nodes and 28980 edges. It was
cleaned by merging its directed edges to indirected edges and by getting
rid of self-loops. The final cleaned graph consists of 5230 nodes and 14470
edges. The DBLP dataset consists of the co-authorship relationships, ex-
tracted from the XML file generated on Sep. 7, 2012, at the DBLP website
(http://www.informatik.uni-trier.de/~ley/db/). Our experiment uses the
largest connected component in this graph, which contains ~970K nodes and
~4M edges. The synthetic datasets are generated using the R-MAT graph
model [5]. This model creates graphs with two major properties of real social
networks: the graphs show small-world characteristics and their vertex degrees
follow power law distribution.

Edge labels are generated for these graphs. The Enron dataset has two real
labels denoting the time of the first email communication and the total number
of message exchanges. Besides these two real edge labels, the graphs are also
associated with other different types (temporal, numerical, and categorical) of
synthetic edge labels. Each type of edge labels comes from a domain with label
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generalization information organized in a hierarchical tree.

We test our techniques on degree anonymization and edge label anonymiza-
tion separately due to the two-stage nature of our solution framework.

Degree anonymization. The set of experiments to test the degree
anonymization techniques are shown in Figures [7I1} In these figures, DP rep-
resents the approach in [20] with recursive probing, DP-heuristic refers to our
approach in Figure [3] which uses only dynamic programing for the initial step,
and Group-heuristic denotes our heuristic approach in Figure [4 based on node
grouping. We compare the different approaches using Enron, arXiv, DBLP, and
synthetic datasets.

Figure[7]compares these three techniques using the Enron dataset by varying
K. Comparing DP and DP-heuristic, we observe that the number of edges
added through DP-heuristic is generally smaller than that through DP. Indeed,
when K is smaller (e.g., 2, 4, 8) DP-heuristic adds much less edges than DP.
This is because DP approach needs to invoke the probing many times and adds
significant random noise. However, our DP-heuristic approach avoids adding
noise to random nodes. With larger K, the numbers of added edges are similar
(Figure (a)) because the degree sequence generated by the first activation of
dynamic programing is very close to be realizable. Thus, the algorithms do
not need any further iteration (for K = 8, K = 32) or need less number of
iterations (for K = 16) to make the degree sequence realizable. The running



time (Figure m(b)) of DP is dominated by the number of iterations, which are 24,
30, 0, 16, 0 for K values 2, 4, 8, 16, and 32 respectively. Thus, its running time
fluctuates with different K values. The number of iterations does not play such
an important role in DP-heuristic. DP-heuristic is more stable and generally
faster than DP, for which we cannot control the number of probing times. Due
to this, our later tests do not include DP for comparison. Among all these three
approaches, Group-heuristic is the fastest approach, but it sacrifices the utility
(with more added edges). More testing results on arXiv dataset (Figure[8)) show
the similar effect of K to different degree anonymization techniques.
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Figure 11: Degree anonymization: Group-heuristic, Synthetic dataset, fix n =
5K

We further evaluate the effect of graph size over the heuristic approaches by
using synthetic data and DBLP data. Figure [I0]shows the results of comparing
DP-heuristic and Group-heuristic for synthetic data. For this test, we fix K = 16
and vary the graph size from ~250 nodes to ~15K nodes. These figures show
that both these heuristic approaches grow linearly in the number of nodes (n)
in the graph, which is much better than the worst case that we derived in
Section [£.1.1] The test on the DBLP dataset (Figure [9) also shows a similar
trend for Group-heuristic when K is varied. However, DP-heuristic approach
is not even able to finish for this dataset and runs out of memory due to its
quadratic space usage. This demonstrates the non-scalability of the dynamic-
programming based approach.

We also show the results of changing the average node degrees to anonymize
the synthetic data, which are generated with the fixed number of nodes (5K).
The results are reported in Figure The number of added edges and the
running time grow almost linear in the average node degrees. This experiment
shows that, practically, we can achieve better performance than the worst case
scenario.

Edge label anonymization. Our second set of experiments analyzed the
effectiveness of the edge label anonymization techniques. First, we performed
experiments to compare the effect of different pruning strategies using the Enron
datasets. The results for different edge label settings are plotted in Figure
In these figures, ¢ in E Li denotes the number of labels on each edge in the graph.
P1, P2, and P3 represent the edge label anonymization approach by applying
pruning strategy 1, 2, and 3 respectively. P123 applies all three pruning strate-
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gies together. |R| refers to the number of set enumeration tree nodes which can
be the target label set of an ST K-solution. Figure a) shows that the prun-
ing techniques (P1, P2, P3, P123) can dramatically reduce the number of nodes
that need to be examined in comparison to the original (non-pruned) enumer-
ation trees, which have 211, 214, and 2!® nodes respectively. Accordingly, these
strategies reduce the running time as well (Figure b)) The linear relation-
ship between the number of expanded nodes and the running time is confirmed



in Figure |12(c).

We next test the effect of the graph size and K by using synthetic datasets
and the DBLP dataset. We only plot the results for P123 and for graph with two
edge labels on each edge (i.e., EL2). Figure [13|and |[14| show that the running
time increases linearly with n (for every K) and K (for fixed n with DBLP
dataset). This is because the search space (i.e., the number of set-enumeration
tree nodes) is fixed once the edge label domains are fixed and the execution time

is mainly affected by the graph size.
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The last set of tests compare the running time of edge label anonymiza-
tion after applying different degree anonymization approaches (DP-heuristic
and Group-heuristic) on a graph. This test is performed on the arXiv dataset
with two edge labels on each edge. Also, the P123 pruning strategy is applied.
Figure [T shows that the edge label anonymization time is almost the same
for graphs which achieve K-anonymity on degrees by using DP-heuristic and
Group-heuristic. This is consistent with the situation that edge label anonymiza-
tion just needs to convert the edge labels and examine the textual anonymity.
This time is the same when the search space is fixed. For larger K, the la-
bel anonymization of graphs after degree anonymization with Group-heuristic
uses slightly more time because the Group-heuristic approach adds more edges
(compared with DP-heuristic) to the graph to achieve degree anonymity.

Information loss. Besides the running time, we also measure the informa-
tion loss of incurred in anonymization. Due to space limitation, we only report
the information loss in anonymizing the Enron dataset for different K values.
The Mincost line in Figure [I6] represents the information loss. We also report
the information-loss difference between a completely anonymized graph (i.e., all
the edge labels are anonymized to their root label) and our solution graph. Such
difference is shown through the Mazcost-Mincost line. This figure shows that
the difference remains almost constant although the Mincost grows linearly in
K. This is because the majority of the anonymization cost is introduced by
edge addition, but not edge label generalization.



6 Conclusions

In this paper, we study the problem of achieving K-anonymity of social net-
works containing rich information to prevent attacks utilizing both structural
(node degrees) and textual (edge labels) information. This problem is formu-
lated as ST K-anonymization. The major challenge in solving this problem is
because of the correlation of edge labels. To address this challenge, we present a
two-phase solution framework, which anonymizes edge degrees and edge labels
in two phases. The first phase, for degree anonymization, leverages the edge
correlation. In this phase, we introduce two heuristics, one based on a dynamic
programming scheme and the other based on node grouping heuristic. In the
second phase of anonymizing edge labels, we introduce a global scheme to avoid
the calculation of O((d!)®X) edge label mapping combinations, where d is the
average node degree in a group of K nodes. This global scheme utilizes a set-
enumeration tree structure to enumerate the global candidates. Furthermore,
we introduce three pruning strategies to improve the efficiency without affecting
the anonymization utility. We theoretical analyze the optimality and running
time complexity for the techniques in different stages of this framework. We
also experimentally show the applicability of the approach by using real and
synthetic data.
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