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dovier@dimi.uniud.it

3Dept. of Computer Science, New Mexico State University
epontell@cs.nmsu.edu

Abstract. Crystal lattices are discrete models of the three-dimensional
space that have been effectively employed to facilitate the task of de-
termining proteins’ natural conformation. This paper investigates alter-
native global constraints that can be introduced in a constraint solver
over discrete crystal lattices. The objective is to enhance the efficiency
of lattice solvers in dealing with the construction of approximate solu-
tions of the protein structure determination problem. Some of them (e.g.,
self-avoiding-walk) have been explicitly or implicitly already used in pre-
vious approaches, while others (e.g., the density constraint) are new. The
intrinsic complexities of all of them are studied and preliminary experi-
mental results are discussed.

1 Introduction

Discrete crystal lattices are regular discretizations of the three dimensional space.
They have been originally introduced to provide formal descriptions of crystalline
solids, where entities are composed of orderly arrangements of molecules, atoms,
or ions, with definite and rigid shapes and with regularly defined faces. Typical
discrete crystal lattices are composed of simple unit cells stacked together in
3-dimensions, repeated according to a predetermined pattern.

In more recent years, discrete crystal lattices have been found very useful
to investigate the 3D conformation of protein structures, in particular in the
context of energy landscape studies [25, 16, 2, 22, 1]. Commonly, Monte Carlo
simulations, based on discrete spatial models, are run to design and test models
of interactions between protein components [25]. In general, a simulation seeks
a minimal entropy conformation, according to the energetic model in use.

Constraint solving is a programming paradigm that can be effectively em-
ployed to solve energy minimization problems, and thus, can be used to com-
pute putative stable conformations. Examples of efficient, exhaustive and opti-
mal search can be found in [2, 4]. Depending on the complexity of the model



in use, the search space and the solution time can grow dramatically. In these
cases, constraint programming can be exploited to generate suboptimal candi-
dates, making use of heuristics to guide the exploration of the search space [9].
Another remarkable feature of constraint programming is the capability to in-
clude additional experimental information as it becomes available. For example,
Nuclear Magnetic Resonance data is successfully handled in [17, 18], rigid body
information in [19], and secondary structure prediction in [9]. Moreover, statis-
tical information retrieved by mining the protein data bank, e.g., a collection of
rotamers, can be introduced to provide additional constraints in the search of
conformations. The information can guide the search, discard infeasible confor-
mations and improve the quality of the results.

Even though the resulting solutions are only approximations of the optimum,
the time required for their generation is typically very low, compared to an ab-
initio molecular dynamics simulation. A viable framework is, thus, to integrate
a fast screening using constraint programming and subsequently to refine the
pool of candidate solutions using molecular dynamics simulations [9].

In these investigations, polymers are laid out in particular subsets of N
3.

These subsets are described by the vectors that specify the set of neighbors of
each point. Lattice models, such as the Face-Centered Cube (FCC) and the chess
knight are among those used in some of the existing studies. The protein folding
problem in the context of discrete lattice structures has been studied as a con-
straint optimization problem in the FCC lattice, using a simplified energy model
in [3] and with a more precise energy model in [9]. In these constraint-based
approaches, each point P of the lattice is represented by a triplet of finite do-
main variables (Px, Py, Pz), where each variable describes a separate coordinate
of the point. In [10], we addressed this problem and proposed a novel constraint
solver, called COLA (COnstraint solver on LAttices), whose primitive domain
allows the representation of lattice points as atomic values, and this increases
the ‘propagation’ capability of the solver. We demonstrated that COLA can
produce more precise approximations of the 3D conformation of proteins in a
significantly shorter amount of time. The constraints used in COLA are only
binary constraints, i.e., constraints that express relations only between pairs of
variables at a time.

Global constraints are proven constructs that facilitate the declarative en-
coding of problems. They allow the programmer to express knowledge about
global relationships existing between several variables at the same time, that
can be effectively employed by the search algorithm to prune infeasible parts
of the solution search space, enabling significant improvements in performance.
In this paper, we propose a study targeting the problem of dealing with global
constraints in the general context of constraint solvers on lattice domain—and
specifically in COLA.

We introduce different global constraints, all motivated by the representa-
tion of the protein structure determination problem as a constraint problem on
discrete crystal lattices. We investigate the computational properties of these
different global constraints, focusing in particular on the complexity of deciding
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satisfiability and of the associated propagation process. Some of the global con-
straints we analyze have been implicitly or explicitly already used in encoding
biological problems (e.g., self-avoiding-walk for the protein folding in [3] and [9])
with ad-hoc solutions for their propagation. However, their intrinsic complexities
have never been precisely analyzed and formally compared. The implementation
of several of these constraints have been discussed in the existing literature,
and the investigation presented in this paper provides a formal justification of
the perceived differences in expressive power and performance. Particular em-
phasis will be placed on the investigation of the density constraint, a novel
global constraint that makes use of information produced from electron cryomi-
croscopy technology. For this constraint, we present preliminary experimental
results, demonstrating encouraging performance.

The ultimate objective of this manuscript is to provide a uniform reference
and formal investigation of global constraints in modeling and solving the protein
structure determination problem. We hope that this paper will inspire further
interest in this problem and promote discussion about suitable global constraints
for discrete lattice structures and efficient implementation techniques.

All proofs are reported in the Appendix.

2 Lattices and COLA

A discrete lattice (or, simply, a lattice) is a graph (P,E), where P is a set of triples
(x, y, z) ∈ N

3, connected by undirected edges (E). Given A = (x, y, z) ∈ P , we
will denote x, y, z with Ax, Ay, Az respectively.

Lattices contain strong symmetries and present regular patterns repeated in
the space. If all nodes have the same degree δ, then the lattice is said to be δ-
connected. Three popular examples of lattices are described next, and illustrated
in Figure 1.

A cubic lattice (P,E) is defined by the following properties:

– P = {(x, y, z) | x, y, z ∈ N};
– E = {(A,B) | A,B ∈ P, sqeucl(A,B) = 1}.

where sqeucl(A,B) = (Bx −Ax)2 + (By −Ay)2 + (Bz −Az)
2.

The cubic lattice is 6-connected—see Figure 1(a). Cubic lattices are encoun-
tered, for example, in modeling various chemical compounds (e.g., cesium chlo-
ride).

A face-centered cube (FCC) lattice (P,E) is defined by the sets:

– P = {(x, y, z) | x, y, z ∈ N ∧ x+ y + z is even};
– E = {(A,B) | A,B ∈ P, sqeucl(A,B) = 2}.

In a FCC lattice we consider the 3D space organized in cubes, each side having
length 2, and where the center point of each face is also admitted. The practical
rule to compute the points belonging to the lattice is to check whether the sum of
the point’s coordinates (x, y, z) is even. Pairs of points at Euclidean distance

√
2

are linked and form the edges of the lattice; their distance is called lattice unit.
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Observe that, for lattice units, it also holds that |xi−xj |+ |yi−yj |+ |zi−zj | = 2.
The FCC lattice is 12-connected—see Figure 1(b).

A chess knight lattice is defined as follows:

– P = {(x, y, z) | x, y, z ∈ N };
– E = {(A,B) | A,B ∈ P, sqeucl(A,B) = 5}.

Each edge allows a move like a knight on a chessboard, i.e., 2 units in one
direction, 1 in another direction, 0 in the third direction. The chess knight lattice
is 24-connected—see Figure 1(c).

(a) (b) (c)

Fig. 1. Basic Component of a Cubic, FCC, and Chess Knight Lattices

In general, we model problems on discrete lattices as a collection of unknowns
(i.e., variables) related by a collection of constraints—i.e., relations between
such variables. The variables represent points that have to be placed in the
lattice space, and the constraints commonly represent spatial constraints on the
mutual positions of such points. A variable V is associated to a domain DV ,
that represents the lattice points that can be legally used as placements for such
variable.

In the case of COLA, a domain D is described by a pair of lattice points
〈low(D), up(D)〉. The domainD defines a set of lattice points in the 3D box iden-
tified by the two opposite vertices low(D) and up(D). COLA handles the domain
operations of intersection, union, and dilation, described in [10]. In modeling a
constraint satisfaction problem, each variable represents an entity to be placed in
a point in the lattice space. Distance binary constraints based either on Euclidean
distance sqeucl or on norm∞(A,B) = max{|Bx−Ax|, |By −Ay|, |Bz −Az |} are
admitted in COLA.

The work presented in [10] describes the implementation of these concepts in
a concrete constraint solving system, capable of performing bounds consistency
on the previously described constraints. The COLA solver has been applied to
the problem of solving the protein folding problem in the FCC lattice, producing
interesting results for proteins of length up to 100 amino acids.
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3 Global constraints

The main contribution of this paper is the identification of which global con-
straints should be introduced in COLA to enhance its declarative nature and
facilitate the efficient resolution of complex problems, in the domain of protein
structure determination. In particular, we expect our design to be general and
applicable to other constraint solvers on lattice domains. In order to be able to
perform forms of consistency which are more accurate than bounds consistency
(explored in our previous work [10]), we assume that the finite domain associ-
ated to each variable is a finite set of lattice points, instead of a simple box, as
in COLA.

Intuitively, a global constraint is a non-binary constraint. More formally,
given n variables X1, . . . , Xn, respectively having domains DX1 , . . . , DXn , a
global constraint C on the variables X1, . . . , Xn can be defined as a subset
C ⊆ DX1×· · ·×DXn . For each global constraint C, we are interested in verifying
two properties [6]:

– (CON) Consistency: C 6= ∅
– (GAC) Generalized Arc Consistency: ∀i ∈ {1, . . . , n} ∀ai ∈ DXi

∃a1 ∈ DX1 · · · ∃ai−1 ∈ DXi−1∃ai+1 ∈ DXi+1 · · · ∃an ∈ DXn (a1, . . . , an) ∈ C

In the specific case where the constraint C is binary, i.e., it involves only two
variables X1, X2, the GAC notion is known as arc consistency (AC): C is arc-
consistent iff

∀a1 ∈ DX1 ∃a2 ∈ DX2 . (a1, a2) ∈ C ∧ ∀a2 ∈ DX2 ∃a1 ∈ DX1 . (a1, a2) ∈ C

Related to the notion of GAC is the notion of filtering, i.e., the problem of
removing values from the domains of variables in order to obtain an equivalent
constraint which is GAC. If the filtering is computationally too expensive, one
can run fast approximated algorithms, that eliminate some values in some do-
mains obtaining an equivalent constraint C′, which is not, however, guaranteed
to be GAC.

Other properties are of interest, e.g., generalized bounds consistency and
directional arc/bounds consistency [14]. Nevertheless, in this paper, we only
deal with the two properties described above, as they are more fundamental to
the initial design of a realistic implementation of such global constraints.

Observe that, under the assumption that the domains are not empty, the
definition of GAC implies CON. Thus, if we prove that testing GAC can be
accomplished in time polynomial (in the size of the problem), the same will hold
for CON. If testing CON can be shown to be NP-complete, then NP-hardness
of testing GAC will immediately follow. Additionally, if we assume an explicit
representation of the domains, then the NP-completeness of CON will actually
imply the NP-completeness of GAC.

In the rest of the paper, we discuss different types of global constraints. These
constraints, along with their main complexity characterization (for performing
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constraint alldifferent contiguous saw alldistant

GAC O(dn1.5) O(nd2) NP-hard NP-hard

constraint chain rigid block density

GAC NP-hard O(nd) NP-hard1

Table 1. Computational complexity of testing CON for the global constraints analyzed

CON), are summarized in Table 11. We start with simple and general global
constraints (such as the alldifferent constraint—see Section 3.1), and move
towards constraints more closely tied to the properties of discrete lattices. In par-
ticular, the typical problems encoded on discrete lattices deal with finding ade-
quate placements of objects in the lattice space. Placements require the entity to
occupy contiguous locations in the lattice (contiguous constraint, Section 3.2),
two parts of the same entity cannot be in the same location (saw constraint, Sec-
tion 3.3), and components of the entity must maintain some minimum distance
to account for the size of the entity (alldistant constraint, Section 3.4). Com-
binations of these conditions lead to more specialized global constraints (chain
constraint, Section 3.5, and block constraint, Section 3.6). Finally, we present
the density constraint (Section 4). Throughout the discussion, we will use the
protein folding problem as guide and motivation.

3.1 The alldifferent constraint

The alldifferent constraint [26] is probably the best-known global constraint
used in constraint programming. It is used to assert that a collection of variables
are assigned pairwise distinct values. Its semantics is as follows: if X1, . . . , Xn

are variables with domains DX1 , . . . , DXn , then

alldifferent(X1, . . . , Xn) = (DX1 × · · · ×DXn) \
{

(a1, . . . , an) ∈ (DX1 × · · · ×DXn) : ∃i, j. (1 ≤ i < j ≤ n ∧ ai = aj)
}

It is well-known that testing the CON and GAC properties, as well as per-
forming GAC filtering for the alldifferent constraint, can be done in polyno-
mial time. These problems can be solved, for example, by adapting algorithms
for bipartite graph matching (the first contribution in this direction is [24]).

The alldifferent constraint has a significant role in the modeling of the
protein folding problem on discrete lattices [10]—to express the fact that a point
in the lattice cannot be used to accommodate two distinct amino acids.

3.2 The contiguous constraint

The contiguous global constraint is used to describe the fact that a list of
variables represent lattice points that are adjacent (in terms of positions in the

1 Under certain restrictions the testing can be performed in polynomial time. More
details are provided in Sect. 4.
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lattice graph). Let E be the set of edges in a lattice, and let X1, . . . , Xn be
a list of variables (respectively, with domains DX1 , . . . , DXn). The contiguous

constraint can be defined as follows:

contiguous(X1, . . . , Xn) = (DX1 × · · · ×DXn) \
{

(a1, . . . , an) ∈ (DX1 × · · · ×DXn) : ∃ i. (1 ≤ i < n ∧ (ai, ai+1) /∈ E)
}

Testing the GAC of contiguous can be done in polynomial time. In fact,
the contiguous constraint is equivalent to the conjunction of the n − 1 binary
constraints of the form Ci,i+1, with i ∈ {1, . . . , n− 1}, such that

Ci,i+1 = (DXi×DXi+1)\{(ai, ai+1) : ai ∈ DXi ∧ ai+1 ∈ DXi+1 ∧ (ai, ai+1) /∈ E}
The graph induced by these constraint is acyclic. Thus, under these conditions
AC implies GAC [15] (see also the proof in the Appendix).

Since AC for binary constraints can be tested in polynomial time, the same
computational complexity will be maintained for GAC. Polynomiality of CON
also follows directly.

The contiguous constraint is particularly relevant when modeling protein
folding problems, since it allows us to state that the sequence of amino acids
composing the primary sequence of a protein should remain contiguous in the
discrete lattice.

3.3 The saw constraint

The saw constraint is used to describe the fact that each assignment to the vari-
ables X1, . . . , Xn represents a self-avoiding walk (SAW) in the lattice. Formally,
the constraint can be defined as follows:

saw(X1, . . . , Xn) = contiguous(X1, . . . , Xn) ∩ alldifferent(X1, . . . , Xn)

The saw constraint can be used, for example, to model the fact that the primary
sequence of a protein can not create cycles when placed in the 3D space. saw is
called SAWalk in [4], where authors state: “we are not aware of any efficient arc
consistency algorithm for this combined constraint in the literature”. We now
prove that such an algorithm does not exist.

Testing the CON property for saw is clearly in NP. We have proved that it is
NP-complete by reduction of the NP-complete Hamiltonian Cycle (HC) problem
on a particular class of planar graphs, called special planar graphs in [8]. The
complete proof is proposed in the Appendix.

A simple polynomial approximation of the saw constraint can be obtained by
replacing the constraint with a number of binary constraints. The application of
AC filtering on these binary constraints represents a polynomial approximation
of GAC filtering for saw. Another simple polynomial filtering process can be
obtained by iterating the alldifferent and contiguous GAC filtering.

Figure 2 compares the three types of filtering on a small example, in the case
of a 2D version of the cubic lattice. The domains are shown on the left of the
arrow (D1 contains a single point, while D2, . . . , D10 include 10 points). On the
right, the figure shows the results of the different forms of filtering—where
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1. all the circles (of any color) represent points left in the domain by AC fil-
tering;

2. light grey (green) circles are points that are removed by the iterated GAC
filtering of alldifferent+contiguous;

3. the white circles are the additional points removed by the GAC filtering of
the saw constraint.

The total size of all the domains (initially equal to 91) is reduced to 38, 19, and
17 in the different approaches.

D1 D2 D3 D4 D5

D6 D7 D8 D9 D10

Fig. 2. Propagation based on AC (all points), iterated alldifferent+continuous

GAC (black and white), and saw GAC (black).

3.4 The alldistant constraint

When we model biological problems on a discrete lattice, we often observe that
the alldifferent global constraints is not sufficiently expressive. In particular,
we often require that values assigned to a group of variables are sufficiently
spread in the lattice, ensuring a minimal distance between each pair of points
assigned to the variables. This is required, for example, to address the fact that
different amino acids of a protein have different volume occupancy.

In the alldistant constraint, given n variables X1, . . . , Xn, with respective
domains DX1 , . . . , DXn , and n numbers c1, . . . , cn, we are looking for a solution
X1 = p1, . . . , Xn = pn such that, for each pair 1 ≤ i, j ≤ n, we have that pi and
pj are located at distance at least ci + cj . More formally:

alldistant(X1, . . . , Xn, c1, . . . , cn) = (DX1 × · · · ×DXn) \
{(a1, . . . , an) ∈ (DX1 × · · · ×DXn) :

∃i, j. 1 ≤ i < j ≤ n ∧ sqeucl(ai, aj) < (ci + cj)
2}

Note that if we consider the alldistantwith c1 = 1
2 , . . . , cn = 1

2 then we achieve
the same effect as alldifferent.

Figure 3 shows a simple example of application of GAC for alldistant. Let
the domains of all the three variables be the set of grey points in the leftmost
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D1 = D2 = D3 AC GAC
removes one node detects unsat

Fig. 3. Different effects of AC and GAC on alldistant(X1, X2, X3, 2, 2, 2)

picture. In the center picture, the green (hatched) point is at distance less than
2+2 from all other points. It is therefore removed by AC. For every other point,
there is always a point at distance greater than 4 (the point at the opposite
corner). Finally, consider the rightmost picture. If the white point is selected for
D1, only the black point is available in D2. No points remain for D3. Thus, the
white point must be removed. The same will happen for the other points: GAC
filtering detects unsatisfiability.

To prove the NP-completeness of the consistency problem, we developed a
reduction of the BIN-Packing problem to the alldistant consistency problem
(see the proof in the Appendix). NP completeness of GAC follows, as usual. The
problem of filtering is open, and it could be investigated, e.g., through adaptation
of the sweep algorithms used in [5]. This line of research is left for future work.

3.5 The chain constraint

The chain global constraint states that the n variables are a self-avoiding walk
and, moreover, a certain distance between amino acids must be respected, save
for consecutive variables that must be distant exactly one lattice point.

More formally, given n variables X1, . . . , Xn, with domains DX1 , . . . , DXn ,
and n numbers c1, . . . , cn:

chain(X1, . . . , Xn, c1, . . . , cn) = ((DX1 × · · · ×DXn) \
{(a1, . . . , an) ∈ (DX1 × · · · ×DXn) :

∃i, j. 1 ≤ i+ 1 < j ≤ n ∧ sqeucl(ai, aj) < (ci + cj)
2})\

{(a1, . . . , an) ∈ (DX1 × · · · ×DXn) :
∃i 1 ≤ i < n ∧ (ai, ai+1) /∈ E}

Note that if we consider the chain with c1 = 1
2 , . . . , cn = 1

2 then we achieve the
same effect as saw. Being therefore a generalization of saw, CON and GAC for
chain are both NP-complete.

3.6 The rigid block constraint

It is a frequent situation, when dealing with protein structure determination,
to have knowledge of local features of the structure, e.g., presence of secondary
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structure components, such as α-helices and β-strands. Thus, we may wish to
express the fact that a collection of points (e.g., amino acids) have to be located
in the discrete lattice according to a predefined pattern (e.g., an helix).

This notion can be represented using another type of global constraint, called
rigid block constraint. A rigid block defines a layout of points in the space that
has to be respected by all admissible solutions. Let X1, . . . , Xn be a list of vari-
ables (having, respectively, domains DX1 , . . . , DXn), and let B = B1, . . . , Bn be
a list of lattice points—that, intuitively, describe the desired layout of the rigid
block. block(X1, . . . , Xn,B) is a n-ary constraint, whose solutions are assign-
ments of lattice points to the variables X1, . . . , Xn, that can be obtained from
B modulo translations and rotations.

More precisely, we define a rotation of a lattice point p = (px, py, pz) as

rot(φ, θ, ψ)(p) = X · Y · Z · pT , where

X =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ



 Y =





cos θ 0 sin θ
0 1 0
− sin θ 0 cos θ



 Z =





cosψ sinψ 0
− sinψ cosψ 0
0 0 1





Although the rotation angles φ, θ, ψ are real valued, only few combinations of
them define automorphisms on the lattice in use. The total numbers of distinct
automorphisms r depends on the lattice—e.g., in the cubic lattice, we have that
r = 16, and in the FCC we have that r = 24.

We extend the definition of rotation to the case of lists of lattice points
(denoted by rot(φ, θ, ψ)(B)), where B is a list of points and the result is a list
in which every element of B is rotated according to the previous definition.

Given a list of points B, we define the concept of templates as the set:

Templ(B) =

{

rot(φ, θ, ψ)(B) :
∃φ, θ, ψ. rot(φ, θ, ψ)(B) is an
automorphism on the lattice

}

which contains the distinct 3-dimensional rotations of the points B in the lattice.
Note that, for a given list of points (B), the cardinality of Templ(B) is at most
r. We say that ℓ = (ℓx, ℓy, ℓz) is a lattice vector if the translation by ℓ of lattice
points generates an automorphism on the lattice.

Let ℓ be a lattice vector; with Shift[ℓ] we denote a mapping that trans-
lates a rigid block according to the vector ℓ. Formally, for each i = 1, . . . , k,
Shift[ℓ](B)[i] = Bi + ℓ. Shifts are used to place a template into the lattice space,
preserving the orientation and the distances between points.

A rigid block constraint block(X1, . . . , Xn,B) is then defined as the set:

{

(a1, . . . , an) ∈ D1 × . . .×Dn : ∃ℓ ∃P.
(

P ∈ Templ(B) ∧
Shift[ℓ](P ) = (a1, . . . , an)

)}

With a fixed rotation of the block, CON is linear in the size of the smallest
variable domain (a simple intersection of possible translations for each domain
has to be performed). GAC is polynomial as well, since it is sufficient to repeat
the CON test for each domain.
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Propagation of this kind of constraint is studied in a wider context in [19].
Moreover, the idea of considering rigid blocks to model substructures of proteins
has also been introduced in [13].

4 Density Constraints

Electron cryomicroscopy is an experimental technique that allows structure de-
termination for large and membrane proteins [27, 20, 7]. The basic idea is to re-
trieve several 2D scans of a high concentration protein solution, in which many
copies of the same molecule are freely oriented in the fluid. The combination of
these scans produces a density map from which it is possible to determine the 3D
structure of large complexes (e.g., the Herpes virus or the identification of the
secondary structure elements of proteins [27]). Although the resolution offered
by this technique is not comparable to that offered by other techniques, it is
considerably cheaper (w.r.t., e.g., NMR methods) and faster (w.r.t., e.g., crys-
tallography techniques). Nonetheless, the information produced can be encoded
in a global constraint that we present in this section.

4.1 Density maps

A density map is a data set obtained through electron cryomicroscopy analysis.
It represents the electron density of molecules in a given portion of space and
usually it has a resolution R ranging from 6Å to 12Å. The resolution R is the
minimal distance that allows two distinct peaks of density to be distinguished.
Common practice is to sample the data with a partitioning of the space into
cubes with side of length S, such that 2S ≤ R. Even if 2S = R is sufficient to
represent data with resolution R, it is useful to work with smaller S, typically
S = 1Å. From the information theory point of view this choice carries no extra
information on the density, however it produces a finer discrete map that allows
to place the corresponding amino acids with higher precision (placements every
S in space on each coordinate instead of R/2).

The density map D can be seen as a function that associates a density value
D(x, y, z) ≥ 0 to each cube at position (x, y, z), which represents the sample
measurement.

In Figure 4, on the right, we show a simple density map of a protein with
4 identical amino acids, arranged on the xy plane. We plot only the maximal z
layer. The map is simulated with a resolution of 10Å and sampled at 1Å. The
darker colors indicate higher densities. The white circles highlight the position
of the center of the individual amino acids. In the same figure, on the left, we
show the contribution of a single amino acid.

Each molecule component provides a typical contribution to the density map.
This contribution can be approximated by a specific contribution function F :
N

3×N
3 → R

+∪{0}. For example, the simplest choice could be to use a Gaussian
contribution:
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Fig. 4. Density map of an amino acid (left) and of a 4-amino acid protein (right)

F(x,p) = Ga,σ(x,p) = ae−
|x−p|2

2σ2

where p ∈ N
3, a ∈ R

+, σ ∈ R
+ are respectively the reference point for the center

of the object, the intensity of the map, and the decay control parameter. The
parameters a and σ can be estimated according to the type of the component,
by first generating density maps for the single components and then performing
a least square approximation. Let us observe that the Gaussian is only one of
the possible forms for the contribution functions: our approach is parametric
w.r.t. the function used.

The chemical description of a molecule—i.e., the set of components and their
chemical bonds—allows us to decompose it into n components of interest. For
example, a protein can be decomposed into the set of composing amino acids,
or, with higher precision, into the set of atoms composing it. Each component
i ∈ {1, . . . , n} can be placed in the space in the position pi, and it provides a
specific contribution function Fi(x,pi), which can be pre-computed.

Given a density map and a molecule, the ultimate goal is to find the possible
placements [p1, . . . ,pn] of the components, so that their combination produces
a density map close to D, namely for each x ∈ N

3

n
∑

i=1

Fi(x,pi) ≈ D(x)

where ≈means that we could introduce some tolerance in how closely we approx-
imate D, due to the errors contained in the experimental data and introduced
by approximations of F functions.

In Figure 4, for example, given the density map and the approximation of
the single amino acid, we would retrieve the four placements (white circles) of
the amino acids in the original protein.

In order to produce the contribution functions for a molecule, once its chem-
ical formula is known, it is possible to derive exactly the electron charge of the
molecule, and thus the expected amount of density in the map. This information
provides the reference to the experimental data and allows us to relate correctly
the single contributions to the density map.
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4.2 The density constraint

We formalize the constraint induced by the knowledge of a density map associ-
ated to a molecule. This global constraint relies on the idea of discretization of
the space into regions (e.g., cubes). These regions can be large enough to contain
more than one chemical component.2

Assume the density map D is known. Let us consider the following items:

– k disjoint regions, numbered i = 1, . . . , k, each described by:
• the set of points Ri ⊆ N

3 of the region. Let R = (R1, . . . , Rk).
• a (density) value di =

∑

(x,y,z)∈Ri
D(x, y, z) ∈ R

+ ∪ {0}.
– n components, numbered 1, . . . , n, each of them characterized by the corre-

sponding contribution function Fi, where F = (F1, . . . ,Fn),
– n variables X = (X1, . . . , Xn) with domains O1, . . . , On, where Oi ⊆ R1 ∪
· · · ∪Rk.

The global constraint density(X,F , R,D) (density constraint) is satisfied by
all the n-tuples 〈p1, . . . , pn〉 ∈ O1×· · ·×On such that for all i = 1, . . . , k it holds
that:

n
∑

j=1

∑

x∈Ri

Fi(x, pj) ≤ di + ε (1)

with ε ∈ R
+ ∪ {0}. The constraint states that each region i provides an upper

bound di to the sum of the density contributions provided by all the components
in that area.

4.3 Complexity Results

We will study the complexity of the consistency problem for slightly simplified
versions of the density constraints. For the sake of simplicity, our analysis is
performed in the 2D space. We define the Density 1 problem as follows:
Input:

1. k disjoint regions 1, . . . , k, each of them characterized by: the set of points
Ri of the region i and a (density) value di ∈ R

+ ∪ {0},
2. n components providing density contributions a1, . . . , an ∈ N.

Question: Establish whether there is an assignment σ : {X1, . . . , Xn} → N
2 such

that for all i = 1, . . . , n:

σ(Xi) ∈
k

⋃

j=1

Rj

∑

j=1...n,σ(Xj)∈Ri

aj ≤ di (2)

2 In the preliminary paper [11] we proposed two global constraints called average
density constraint and punctual density constraint. The one considered here is more
general of both of them.
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Proposition 1. The Density 1 problem is NP complete.

The proof (see the Appendix) is a reduction from bin packing. In this proof,
we assume the possibility of arbitrary density contributions for the components.
However, in a real problem at hand, density contributions come from a specific
finite set of values, depending on the nature of the individual components. The
following version of the density problem, in which the sets of component values
are known in advance (let α be its cardinality), and a maximum number of
components per region is fixed (bounded by a parameter β), admits a polynomial
consistency check. Let α ∈ N and β ∈ N be fixed. Let the Density 2 problem
be defined as Density 1 with the further requirement:

3. The density contributions a1, . . . , an are chosen from a set of α different
elements and they are such that for all i = 1, . . . , n it holds that aiβ ≥
max{d1, . . . , dk}
Then it holds that:

Proposition 2. The Density 2 problem can be solved in polynomial time.

The proof is reported in the Appendix. However, this result is only of the-
oretical interest. The complexity is O(nq) but, in practice, the exponent q is
rather large. For instance, assuming α = 20 (one characteristic value for each
amino acid) and β = 5 (at most 5 amino acids can be in a region), we obtain
q = 637, 560, 000.

4.4 Preliminary experimental results

We can include density constraints in the context of a constraint solving frame-
work used to determine the placement of amino acids in N

3. Given a protein
sequence S ∈ {1, . . . , 20}n, its density map D, the j-th amino acids density map
parameters aj and a Gaussian function Gj , j ∈ {1, . . . , 20},3 we define the vari-
ables Xi with domains Di ⊆ N

3, with i ∈ {1, . . . , n}. The space is assumed to be
regularly discretized, according to the structure of the cubic lattice, with R be
the set of cubic regions considered. The constraints added to the problem are:

– density(X ,G, R,D)
– contiguous(X) which imposes that each pair of consecutive amino acids is

placed at Euclidean distance equal to 3.8Å.

The CSP defined above in general does not admit solutions; this is due to two
main reasons. The first one is that, given the discrete domains of amino acids
positions, it is not possible to find a pair of points at exact distance equal to
3.8Å. The distance constraint contiguous has to be, in fact, relaxed, in order to
allow admissible solutions. In the implementation, we used the range 3.3Å–5.2Å
as acceptable distances.

3 I.e., we have individual parameters a and σ for each one of the 20 distinct amino
acids.
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The second reason is more subtle: given the approximations made to model
the contribution functions as Gaussian distributions and the discretized loca-
tions of contributions, it is impossible to recreate exactly the original density
map D. This translates to the fact that the best solution, in which the compo-
nents are mapped as close as possible to the original positions, provides fluctu-
ations w.r.t. the original density map. The slight local excess of density would
immediately falsify the density constraint. It is convenient, thus, to increase the
original density map by adding a density threshold, obtained, e.g., as a fraction
of a single amino acid maximal punctual contribution.

The combination of the two constraints allows a filtering that can be per-
formed as follows. A domain point p for amino acid Si has support only if the
presence of Si does not violate D. Moreover there must be a compatible as-
signment of Si−1 and Si+1 that respects both the contiguous and the density

constraints.

It is possible to further enhance the filtering, considering that, for each sup-
ported assignment of Si, if there is a point t such that D(t) is greater than the
sum of contributions of Si−1, Si, and Si+1 in t, then it will be possible to add
another generic amino acid that contributes to t, in order to reduce the gap.
This boils down to finding a support for this amino acid.

To show the impact of the density constraint, we focus on simple examples
in the 2D plane and on a small peptide in the 3D space. The prototype is
implemented on an AMD Opteron 2.2GHz Linux machine.

Examples in the 2D space

In the first example, we arrange a chain of 30 amino acids with a spiral shape,
respecting the distance of 3.8Å between consecutive elements. This example
shows that non-trivial arrangements can be reconstructed, despite the fact that
the domain of admissible positions is discrete.

In Figure 5, we show the input density map (on the left) and the computed
density map (in the center) generated by an admissible solution (on the right).
The darker pixels represent the denser regions. The side of a pixel is 1Å and the
simulated resolution is 10Å.

Fig. 5. Spiral with 30 amino acids: density (left), predicted density (center) and place-
ment (right)
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In the second example, we show how a uniform density map (obtained by a
square tiling arrangement of 16 amino acids on the plane) can be reconstructed.
The density maps and resulting configuration are shown in Figure 6 (we report

Fig. 6. Square with 16 amino acids: density (left), predicted density (center) and place-
ment (right)

the first admissible arrangement found).
The results are summarized in Table 2. The Filtering column shows the time

required for the initial pruning of domains before the search is started. In the
spiral example, the filtering allows us to significantly reduce the size of initial
domains for central variables, while for side amino acids the domain covers the
whole spiral. The Domain size column reports the size of the domains of the
variables involved. Observe that after the filtering only 16 points are allowed
to the first and last variables of the spiral. Central variables, instead, have 387
points allowed. The presence of small domains allows us to exploit a first fail
strategy that is able to find a solution after few backtracks.

Amino acids Filtering Domain size Search Nodes

Spiral 30 119.1 s 16–387 0.13 s 103

Square 16 23.8 s 214 95.6 s 124,663

Table 2. Summary of the experimental results for examples 1 and 2

Observe that, in the square example, there are many equivalent solutions,
roughly bounded by the number of possible self avoiding walks inside the square.

Examples in 3D space

Let us consider a more realistic example, using data from a real protein. We
considered a small beta hairpin (PDB ID: 1LE0, model 1), made of 12 amino
acids. We simulate its density map using a discretization of 1Å and a resolution of
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8Å. The contiguous range is set to 3.2—5.0Å. Moreover, we consider a threshold
of tolerance between simulation and reference, of 0.65 times the highest density
value found in the density map of Glycine (the smallest amino acid). The search,
launched without any particular heuristic and/or optimization, finds a solution
in 15 minutes.

Fig. 7. Original density (left), predicted density (center) and 4x error (right)

In Figure 7, we show a central z layer of the density map. On the left, we
show the simulated density map, while in the center we show the sum of the
contributions of the amino acids in the solution. The darker pixel represents
a denser region. The picture has been plotted using the same scale. It can be
noticed than the computed placement tends to give a more compact result, since
the side chains are approximated by a simple Gaussian sphere. On the right, we
show the error between the two maps, enhanced by 4 times w.r.t. the other plots
scale, to make it more visible.

In Figure 8, we show the 3D plot of the original backbone of 1LE0 (on the left)
and the backbone detected in the solution (on the right). It is interesting to note
that the beta shape is well preserved. However, there is a shift in the position
of the first/last amino acids. Basically, the start of the protein is misplaced, due
to the ambiguity in the density map and to the current complete flexibility of
bend angles between amino acids.

Fig. 8. Original protein (left) and simulated protein(right)
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We would like to stress that the space searched depends exponentially on the
number of neighbors, once an amino acid is fixed. In these examples, there are
52 neighbors that respect the contiguous constraint (recall that we use a range
of allowed distances). The presence of the density constraint allows us to deal
with a 52n search space working with 1Å accuracy. This is extremely desirable
in order to obtain sound results. In systems like COLA [12], the accuracy was
set at 3.8Å with only 12 neighbors per point (due to the Face Centered Cubic
lattice used). We wish to find a good compromise between these two different
discretizations.

These results, although preliminary, provide a good indication of the poten-
tial of the density constraints. For example, the knowledge of known rigid blocks
(e.g., helices, beta strands) could sensibly constrain the search space allowing
faster and more realistic predictions.

5 Conclusions and future work

In this paper, we presented an analysis of various global constraints designed
to provide declarative encoding of problems on discrete crystal lattices. Discrete
crystal lattices have been extensively used to provide discretizations of the 3D
space that are amenable of efficient computation for modeling approximated
solutions to the protein structure determination problem.

Although several researchers have identified constraint solving as an effective
paradigm to produce approximated solutions of protein conformations in discrete
crystal lattices, the majority of the literature has ignored the problem of inves-
tigating what kind of global constraints are relevant and how efficiently these
can be computed. This paper offers the first formal study of global constraints
in discrete lattices for protein structure determination.

The introduction of global constraints is motivated by the need of a specific
formalization and efficient solving techniques of the protein structure determi-
nation problem. The different global constraints considered are motivated by
different aspects of modeling a protein conformation. For each constraint, we
discussed its computational complexity, providing novel complexity results, that
are essential to understand the cost of the different constraints and to identify
the critical computational aspects in handling these constraints in a concrete
constraint framework.

The future work is focused on the development of effective implementations of
these global constraints within the COLA framework. Some preliminary exper-
iments have been conducted with encouraging results. The inherent complexity
of the problem at hand, demonstrated by the high computational complexity
of the global constraints, requires the introduction of approximation algorithms,
especially in the computation of the propagation algorithms. Effective data struc-
tures to facilitate the task of filtering are also being explored. In particular, the
density constraint could be implemented making use of oct-tree data structures
to efficiently represent the density maps and to speed up constraint propagation.
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Another important aspect of future work is the investigation of the inter-
action between different global constraints. We conjecture that selected sets of
global constraints can effectively help each others in performing a more dramatic
pruning of the search space. For example, the integration of density information
and other global constraints (e.g., rigid block, saw) is expected to provide
good results.

We also plan to define a space model that can accommodate the differences
between the typical density discretization (cubic lattice with 1Å side) and the
statistical free energy model, better encoded by an FCC lattice with 3.8Å lattice
unit.
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APPENDIX: COMPLEXITY PROOFS

Polinomiality of contiguous

The contiguous constraint, defined as follows:

contiguous(X1, . . . , Xn) = (DX1 × · · · ×DXn) \
{

(a1, . . . , an) ∈ (DX1 × · · · ×DXn) : ∃ i. (1 ≤ i < n ∧ (ai, ai+1) /∈ E)
}

is equivalent to the conjunction of the n−1 binary constraints of the form Ci,i+1,
with i ∈ {1, . . . , n− 1}, such that

Ci,i+1 = (DXi×DXi+1)\{(ai, ai+1) : ai ∈ DXi ∧ ai+1 ∈ DXi+1 ∧ (ai, ai+1) /∈ E}

The constraint propagation, as well as the CON tests, can be executed in
polynomial time. This result can also be justified as follows. Let us assume that
for every i ∈ {1, . . . , n− 1}, Ci,i+1 is arc consistent. Let us choose i ∈ {1, . . . , n}
and ai ∈ DXi .

– Since Ci−1,i is AC, then there is ai−1 ∈ DXi−1 such that (ai−1, ai) ∈ Ci−1,i.
The process can be recursively repeated until C1,2 is reached.

– Since Ci,i+1 is AC, then there exists ai+1 ∈ DXi+1 such that (ai, ai+1) ∈
Ci,i+1. The same process can be recursively repeated until Cn−1,n is reached.

Thanks to this backward and forward process, we can collect a set of elements
such that (a1, . . . , ai, . . . , an) ∈ C, thus proving that contiguous(X1, . . . , Xn)
is GAC.

Observe also that, if there exists Ci,i+1 that is not AC, then C will not be
GAC. In fact, that would imply that there is ai ∈ DXi s.t. ∀bi+1 ∈ DXi+1 we have
that (ai, bi+1) /∈ E. This means, in particular, that for all b1 ∈ DX1 , . . ., bi−1 ∈
DXi−1 , bi+1 ∈ DXi+1 , . . ., bn ∈ DXn , we have that (b1, . . . , bi−1, ai, bi+1, . . . , bn) 6∈
C.

NP-completeness of saw

We prove the NP-completeness of the consistency problem for saw constraints by
reduction of the NP-complete Hamiltonian Cycle (HC) problem on a particular
class of planar graphs, called special planar graphs in [8]. The proof consists of
two steps. First we show how to embed a special planar graph G in a graph G′

whose nodes and edges are in a cubic lattice. G′ is then “enlarged” (replacing
each edge with two connected edges with a new intermediate node) obtaining a
new graph G′′, that we use to define variables+domains for an equivalent saw

problem.
A special planar graph G = (N,E) [8] is composed of a number of loops (e.g.,

the four loops 1, 2, 3, 4 in Figure 9), each containing only nodes with degree
3 (e.g., the various nodes A,B,C,D in each loop), along with paths of length
2 connecting nodes that belong to distinct loops. Let n = |N |. Observe that
loops have to contain at least three nodes (otherwise you would have two edges
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Fig. 9. An example of special planar graph G

connecting two nodes). Moreover, it is easy to see that if there is a loop in the
graph containing an odd number of nodes, then no HC exists for G. For this
reason, we concentrate on graphs containing only loops with even (with at least
4) numbers of nodes. We assume, moreover, that G contains at least 2 loops
(otherwise the HC problem is trivially true).

Let us define how to obtain G′ from G. For each loop i, of size 2ni, and
consisting of the nodes p1, . . . , p2ni

, we generate a subgraph of G′, called gadget,
which contains 2ni×(ni+2) nodes arranged as follows. These nodes are obtained
using a clockwise enumeration of the loops—the starting point is irrelevant.
There is a core of the gadget made of a loop of 2ni nodes, arranged as a 2× ni

rectangle. ¿From each of the core nodes there is a path leading to the nodes
p1, . . . , p2ni

. Those nodes are called the output nodes of the gadget. In Figure 10
we report a gadget for a 8-nodes loop.

Fig. 10. Example of gadget for a loop of size 8

Let us fix one of the dimensions of the cube (w.l.o.g., z = 0) and let us work
on the resulting 2-dimensional plane. Let us consider an arbitrary enumeration
of the loops ℓ1, . . . , ℓk of G and let us align the gadgets on the plane according
to such ordering. In particular, all the output nodes of the gadget have y = 0,
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and they are adjacent in the x dimension (see Figure 11). All other nodes of the
gadget have y > 0.

Fig. 11. The aligned gadgets for graph G in Figure 9

Consider, in lexicographical ordering, the loop pairs 〈ℓa, ℓb〉, a < b, that are
connected by edges in E. We wish to create copies of the output nodes of ℓa and
ℓb in a separate plane (to avoid intersection of edges) and recreate on this plane
the connection structure of G.

Let us illustrate the process for all the pairs 〈ℓ1, ℓb1〉, . . . ,〈ℓ1, ℓbh
〉 such that

there are edges between loop 1 and loop bi in G.

In the plane i, we add copies of the “relevant” output nodes for loop 1 and
bi. E.g., if an output node of loop 1 or loop bi is at coordinates (x, y, 0), and
such node is part of an edge connecting these two loops, then a copy of such
node will be created at coordinates (x, y, i). Furthermore, copies of such nodes
are also placed in all the intermediate planes (planes 0 ≤ z ≤ i− 1), and edges
connecting these copies are created—i.e., edges of the type ((x, y, z), (x, y, z+1)).
The edges between the nodes of distinct loops of G are simulated by paths in the
plane i. The output nodes of the gadgets 1 and bi respect a clockwise traversal
of the loops 1 and bi. Since G is planar, we can connect using non-intersecting
paths in plane i (see Figure 12). As a strategy, start with the rightmost output
node of loop 1.

Fig. 12. The encoding of the edges outgoing from loop 1 in Figure 9
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The process is repeated for all the other pairs of connected loops (increment-
ing the plane levels). In Figure 13 we show the graph G′ corresponding to the
graph G of Figure 9.

A rough estimate of the size of the resulting graph is the following. The
number of x indices used is O(n) (gadgets outputs are the same as loop lengths).
The number of values of y used is O(n) for the gadgets plus O(|E|) = O(n2).
The number of values of z used is again O(|E|) = O(n2). Thus the global “box”
containing G′ contains O(n5) points.

Since the graph G′ maintains the topology (and at most introduces new
nodes with degree 2 on paths), it holds that the Hamiltonian Cycle problem on
G′ has a solution iff G has. Basically, G′ is a copy of G where the edges linking
distinct loops are stretched (by adding new nodes of degree 2). We will refer these
sequences of edges as loop2loop. loop2loops have always length at most 4 (out of
the gadgets) plus 2 (within the gadgets). We will use the same terminology in
G′′.

Fig. 13. The graph G′ obtained from G in Figure 9

We need an additional step to encode the HC problem using the saw con-
straint. The basic idea is that a self-avoiding walk is an Hamiltonian Path. The
problem is that in G′ representatives of elements of N may lie at distance 1 in
spite of them not being connected by an edge in E. If we introduce variables and
assign to their domains the nodes of N ′, self-avoiding walks on the nodes of N ′

can have trajectories that do not exist in G.
We define the graph G′′ = (N ′′, E′′) as follows:

◦ for each edge ((x, y, z), (x+1, y, z)) ∈ N ′,N ′′ contains the nodes a = (2x, 2y, 2z),
b = (2x+ 1, 2y, 2z), c = (2x+ 2, 2y, 2z), and the edges (a, b) and (b, c).
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Fig. 14. Loops in G, G′, and G′′. Observe that the Hamiltonian paths in G and G′

cannot touch half of the extra nodes added in loops in G′′

◦ for each edge ((x, y, z), (x, y + 1, z)), N ′′ contains the nodes a = (2x, 2y, 2z),
b = (2x, 2y + 1, 2z), c = (2x, 2y + 2, 2z), and the edges (a, b) and (b, c).

◦ for each edge ((x, y, z), (x, y, z + 1)), N ′′ contains the nodes a = (2x, 2y, 2z),
b = (2x, 2y, 2z + 1), c = (2x, 2y + 2, 2z + 2), and the edges (a, b), (b, c).

The graph G′′ is a copy of G′, in which each edge is substituted by a subgraph
of the form (edge, new node, edge). Let m = |N ′′|. In Figure 14, on the right
it is depicted a fragment of G′′ obtained from the fragment of G′ in the center
of the figure. Observe that edges in E′′ connect nodes at Euclidean distance 1.
This property can be exploited by saw to simulate the graph connectivity.

Consider again Figure 14 from left to right. Let us assume that G admits an
Hamiltonian Cycle. Any Hamiltonian Cycle traverses the loop in a way similar
to the one depicted. There is a corresponding Hamiltonian Cycle traversing the
loop in G′. A corresponding path exists in G′′; however it is not Hamiltonian
since half of the nodes of the loop cannot be traversed by that path. We must
take care of that designing our encoding.

Let L be the global number of nodes in loops of G divided by 2. Define the
variables X1 . . .Xm−L, and for 1 < i < 2m let DXi = N ′′. For the variables
X1 and Xm−L we specify a singleton domain as follows. Identify in G′′ two
consecutive nodes of degree 2 in a loop2loop. Let us call them α and ζ (see also
Figure 14—right). Then DX1 = {α}, DXm−L = {ζ}. The definition of the CSP
is completed by the constraint saw(X1, . . . , Xm−L).

Theorem 1. G′ admits an Hamiltonian Cycle iff G′′ admits a self avoiding walk
with m− L nodes starting from α and ending in ζ.

Proof. (→) Let us assume that G′ has an HC. The same cycle can be mimicked
on the extended graph G′′. All nodes in loop2loops are traversed by this path.
Instead, for each loop, a number of points which is half of the number of points
of the original loop in G is not traversed by the path. Then, the cycle has length
m− L.

Since α and ζ have degree 2 and are in a loop2loop, the cycle must contain
the edge (α, ζ). Removing such edge from the path we obtain a SAW of length
m− L starting in α and ending in ζ.
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(←) Let α, p2, . . . , pL−m−1, ζ be a SAW consisting of m−L nodes of G′′ starting
from α and ending in ζ. Since |N ′′| = m, exactly L nodes of N ′′ are left out by
this SAW.

1. If the SAW enters and exists all the loops as in Figure 14, then it will leave
out L nodes and it corresponds to an Hamiltonian Path in G′ starting in
α and ending in ζ. Since α and ζ are consecutive nodes of degree 2, it is
sufficient to add the edge (ζ, α) to find the cycle which corresponds to an
Hamiltonian Cycle in G.

2. Since α and ζ are in the same loop2loop it is impossible that a SAW starting
in α and ending in ζ does not enter any loops, unless m − L = 1, which
cannot be true by construction of G′′.

3. It remains to analyze the case in which the SAW traverses a loop in a way
different from that of point 1. Assuming that it exists, we will find a contra-
diction with its length m−L. For these SAWs, there is at least one loop2loop
left out from a path traversing one loop, as in the following figure:

We have already seen that loops2loops are of length ≥ 6 in G′ (13 in G′′).
Let e and d be the first two nodes of the loop2loop left out. These two nodes
cannot be crossed by the SAW. As a matter of fact, if d or e are reached by
a SAW, there is no way to come back to ζ without repeatedly visiting the
same nodes.
On the other hand, the SAW inside the loop visits both the points a and
c adjacent to the entering point b of the analyzed loop2loop. With respect
to a SAW of the form dealt with in point 1, the SAW visits one additional
point in the loop but looses two points outside the loop. This happens for
every loop and for every loop2loop excluded by the SAW. Thus, more than
L points of G′′ are left out. This is a contradiction. �

This reduction is polynomial, thus the CON of saw global constraint is NP-
complete, and, consequently, GAC is NP-hard. Observe that the proof has been
carried out using the cubic lattice. It is easy to modify the mapping for other
3D lattices.

NP-completeness of alldistant

We show how to reduce the BIN-Packing problem to the consistency problem
for the alldistant constraint. Let us consider n items of size c1, . . . , cn and k
bins (bin 0, . . . , bin k− 1) of capacity B. W.l.o.g., let us assume that, for all i ∈
{1, . . . , n}, it holds that ci ≤ B (otherwise the problem is trivially unsatisfiable).
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We reduce the problem using only one dimension of the lattice (assume, e.g.,
that all y and z coordinates are fixed to 0). We consider consecutive lattice
collinear points. For the sake of simplicity, we consider lattice points (0, 0, 0),
(1, 0, 0),(2, 0, 0), . . . and we refer to them simply as 0, 1, 2, . . .4

The reduction is defined as follows. Let us introduce n lattice variables
X1, . . . , Xn. For i ∈ {1, . . . , n} the domain DXi is defined as

DXi =

k−1
⋃

j=0

[4jB + ci .. 4jB + 2B − ci]

For example, consider the instance: c1 = 4, c2 = 3, c3 = 5, c4 = 1, B = 7, k =
2. Then D1 = [4 .. 10]∪ [32 .. 38], D2 = [3 .. 11]∪ [31 .. 39], D3 = [5 .. 9]∪ [33 .. 37],
D4 = [1 .. 13] ∪ [29 .. 41].

Intuitively, each interval [0 .. 2B], [4B .. 6B], [8B .. 10B], . . . corresponds to a
bin. Each assignment of the variableXi in Di is such that all values [Xi−ci, Xi+
ci] are included in exactly one of the above intervals. The item i is assigned to
the bin corresponding to such interval. If the values of Xi and Xj are in two
different intervals, then |Xi −Xj| > 2B ≥ ci + cj.

We show that there is a solution for the instance of the BIN-packing problem
if and only if there is a solution for the CSP alldistant(X1, . . . , Xn, c1, . . . , cn).
In the above example, a solution of the CSP is X1 = 4, X2 = 11, X3 = 33,
X4 = 40, from which one can conclude that we should place items 1 and 2 in
bin 0 and items 3 and 4 in bin 1.

For one direction, assume that the CSP admits a solution σ. Consider all the
variables taking values in σ(Xi) ∈ [4Bj .. 4Bj+2B]. Assume that those variables
are Xj

1 , . . . , X
j
mj

, and assume that σ(Xj
1) < · · · < σ(Xj

mj
). This means that

– σ(Xj
1) ≥ 4Bj + cj1 (constraint on the domain),

– σ(Xj
2) ≥ 4Bj + cj1 + (cj1 + cj2) = 4Bj + 2cj1 + cj2 (alldistant constraint),

– σ(Xj
3) ≥ 4Bj+ cj1 +(cj1 + cj2)+ (cj2 + cj3) = 4Bj+2cj1 +2cj2 + cj3 (alldistant

constraint),

– and so on, until σ(Xj
mj

) ≥ 4Bj + 2(cj1 + cj2 + cjmj−1) + cjmj

Moreover, for the constraint on the domain, it holds that σ(Xj
mj

) ≤ 4Bj+2B−
cjmj

. This means that 2(cj1 + cj2 + · · ·+ cjmj
) ≤ 2B. Thus, put all items associated

to the considered variables to bin j to obtain a solution of the bin packing.

The vice versa is similar. Given a solution of the bin packing, for each bin j,
consider the items item

j
1, item

j
2, . . . , item

j
mj

assigned in to the bin j. Then set

σ(Xj
1) = 4Bj + cj1, σ(Xk

2 ) = 4Bj + 2cj1 + cj2, . . . , σ(Xj
mj

) = 4Bj + 2(cj1 + cj2 +

cjmj−1) + cjmj
.

4 For some lattice structures, it may be necessary to choose a different subset of points.
The proof can be adapted by choosing, e.g., a collinear set of lattice points (some
scaling of coefficients may be needed).
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Fig. 15. An example of reduction from bin packing

The density constraint

The Density1 problem is clearly in NP. To prove its NP completeness, let us
reduce the bin packing problem to the Density 1 problem.5

Let us define box[(x1, y1), (x2, y2)] =
{

(x, y) ∈ N
2 : x1 ≤ x ≤ x2, y1 ≤ y ≤ y2

}

.
Consider an instance a1, . . . , an, C,B of bin packing, where the ai’s are the to-
kens, C is the bin capacity, and B the number of bins. Let M ≥ 1 be an arbitrary
integer number. We can construct an instance of Density 1 as follows:

– k = B and d1 = · · · = dk = C
– R1 = box[(0, 0), (M −1,M −1)], R2 = box[(d, 0), (2M −1,M −1)], . . . , Rk =

box[((k − 1)M, 0), (kM − 1,M − 1)]
– The n components provide density contributions a1, . . . , an

– The contribution functions are as follows:

Fi(x,p) =

{

ai, if x = p

0 otherwise

It is easy to see that this instance of bin packing has a solution iff the corre-
sponding instance of Density 1 has. �

Now, let α ∈ N and β ∈ N be fixed. Then the Density 2 problem is defined
as follows.
Input:

– k disjoint regions 1, . . . , k, each described by:
• Ri be the set of points of the region i
• a (density) value si ∈ R

+ ∪ {0}
– n components with density contributions a1, . . . , an chosen from a set of α

different elements and such that aiβ ≥ max{d1, . . . , dk}
5 Observe that the bin packing problem is (strongly) NP-complete (see, e.g., [21, pp.

203–205]).
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– n variables X1, . . . , Xn

Question: Establish whether there is a one-to-one assignment σ : {X1, . . . , Xn} −→
N

2 such that for all i = 1, . . . , n formulae (2) hold.
We show that the Density 2 problem can be solved in polynomial time. By

hypothesis, each ai is chosen in a set of α elements, say {m1, . . . ,mα}. The set
of components in a region R can therefore be identified as a tuple 〈t1, . . . , tα〉,
where ti represents the number of occurrences of components of value mi in that
region.

Let S = max{d1, . . . , dk}. By hypothesis, for all j = 1, . . . , n, we have that
ajβ ≥ S. Thus, for all i = 1, . . . , α, we have that miβ ≥ S. We know that for
every region R and every solution σ it holds that

α
∑

i=1

timi =
∑

j=1...n,σ(Xj)∈R

aj ≤ S

Let m = min{m1, . . . ,mα}. Assume, by contradiction, that
∑α

i=1 ti > β. Then,

α
∑

i=1

timi ≥
α

∑

i=1

tim > βm ≥ S

which is an absurdum. Therefore,
∑α

i=1 ti ≤ β (and, in particular, ti ≤ β).
Now, let us find an upper bound for the number of these tuples. Let us

distribute in a line α white balls (from left to right, one for each element mi)
and β black balls. The number of black balls immediately on the right to the
i-th white ball denotes the number of occurrences of elements mi in the region.
For instance, if α = 4 and β = 3:

- • • • ◦ ◦ ◦ ◦ stands for 〈0, 0, 0, 0〉
- ◦ • • ◦ • ◦ ◦ stands for 〈2, 1, 0, 0〉
- • ◦ • ◦ • ◦ ◦ stands for 〈1, 1, 0, 0〉
- • • ◦ ◦ ◦ ◦ • stands for 〈0, 0, 0, 1〉

It is easy to see that there is a disposition for each possible tuple. Thus, the

number of possible tuples is q = (α+β)!
α!β! and any possible solution can be given

(and tested) by enumerating, for each value of q, how many regions are in that
way. An upper bound is therefore kq = O(nq). �
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