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Abstract—Multivariate time series (MTS) are collected for different variables in studying scientific phenomena or monitoring system
health where one time series records the values of one variable for a time period. Among the different variables, it is common that only
a few variables contribute significantly to a specific phenomenon. Furthermore, the variables contributing significantly to different
phenomena are often different. We denote the different variables that contribute to the occurrences of different phenomena as
Phenomenon-specific Variables (PVs). In this paper, we formulate a novel problem of identifying significant PVs from MTS datasets. To
analyze MTS data, feature extraction techniques have been extensively studied. However, most of them identify important global
features for one dataset and do not utilize the temporal order of time series. To solve the newly introduced problem, we propose a
solution framework, CNNmts-X, which is a new variant of the Convolutional Neural Networks (CNN) and can embed other feature
extraction techniques (as X). Furthermore, we design a CNNmts-LR method that implements a new feature identification approach
(LR) as X in the CNNmts-X framework. The LR method leverages both Linear Discriminant Analysis (LDA) and Random Forest (RF).
Our extensive experiments on five real datasets show that the CNNmts-LR method has exhibited much better performance than
several other baseline methods. Using 30% of the PVs discovered from the CNNmts-LR, classifications can achieve better or similar
performance than using all the variables.

Index Terms—Multivariate Time Series (MTS), Convolutional Neural Network (CNN), Linear Discriminant Analysis (LDA), Random
forest (RF), Imbalanced Data
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1 INTRODUCTION

MAny applications collect multivariate time series
(MTS) for different variables where one variable’s

time series records the values of this variable for a time
period. For example, in tracking human-body movement,
multiple sensors (which are treated as variables) are at-
tached to different parts of a body to collect their location
information; In environmental sciences, different sensors are
used to track environmental information such as tempera-
ture and soil moisture. MTS data are typically associated
with corresponding phenomena labeled as classes (e.g.,
walking, sitting, budding). Utilizing both the MTS data
and their corresponding class labels, scientists can conduct
predictions or classifications. Very often, it is desired to
make as accurate predictions or classifications as possible.

However, generating highly accurate predictions is not
sufficient. In many situations, it is even more important to
understand variables that are most critical for phenomena
interpretation or decision making. We observe that, among
all the variables, it is common that only a few variables con-
tribute significantly to a specific phenomenon. Furthermore,
the variables contributing significantly to different phenom-
ena are different. E.g., in tracking human body movement,
we observe that sensors attached to lower legs can help
better identify walking activities than sensors attached to
upper arms. Thus, it is more useful to monitor different sets
of sensors when a person is conducting different activities
(sitting or walking). Our observation of different variables
contributing to different phenomena is also utilized in
clustering analysis where projected clustering (PC) [1], [2]

obtains groups of points that are close in different subsets of
dimensions. However, typical PC does not work well with
variable selection on MTS data. PC treats all the values in a
time series as independent dimensions (i.e., each time point
is a dimension); thus, the clusters are time-point specific,
instead of variable specific.

We denote the different variables that contribute signifi-
cantly to different phenomena as Phenomenon-specific Vari-
ables (PVs). PVs carry the most critical information for a
specific phenomenon. We formulate a novel problem of identify-
ing significant PVs from multivariate time series. Note that the
solution to this problem is not finding the different features
for better predictions. Instead, we are interested in finding
variables that make critical contributions to the explanation
of specific phenomena (or events).

The proposed problem is different from existing efforts
that analyze time series data. Most existing techniques iden-
tify global features for one dataset (e.g., [3], [4], [5], [6], [7],
[8]). Such global features are used together to analyze the
different events in one dataset. The PVs are different from
global features because they are specific to different phe-
nomena. Due to such differences, most existing techniques
cannot be directly utilized to solve our proposed problem.

Two major challenges need to be addressed to solve
the proposed problem. The first challenge comes from the
large amount of computation from a huge search space.
Assume that the MTS datasets are collected for A variables
and the time series instances correspond to E different
event types, then the possible number of variable subsets is
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E·(2A−1), which is the search space of the PVs. The second
challenge comes from the nature of time series, which has
values recorded in a temporal order. Treating these values
with or without temporal order may generate very different
results. A successful example of utilizing the temporal order
of the values is the Shapelets approach [7]. Shapelets ap-
proaches are orthogonal to our methods because Shapelets
approaches identify the important subsequences (for multi-
ple or all variables) in MTS data, while our work detects
the important variables among all the variables. In the
calculation of PVs, we desire to consider the temporal order
of values in each variable’s time series.

This paper proposes a new solution framework,
CNNmts-X to solve the problem. This framework designs a
variant of Convolutional Neural Networks (CNN), denoted
as CNNmts, and allows flexible utilization of other feature
extraction techniques as X . We also present a new PV
identification algorithm LR, which takes advantage of both
Linear Discriminant Analysis (LDA) [9] and Random Forest
(RF) [10]. CNNmts can capture the temporal order of values in
a time series and LR identifies the PV sets while reducing the
search space. The contributions of this paper are as follows.
• We formulate the novel problem of discovering signifi-

cant PVs from MTS data.
• We propose a solution framework CNNmts-X to solve

the problem. The CNNmts-X framework includes a new
variant of CNN model, CNNmts, to deal with multivari-
ate time series data. As a side effect, CNNmts can also
be used to classify MTS data with multiple class labels.

• We implement one newly designed oversampling batch
generation strategy in CNNmts to process imbalanced
datasets.

• We present a new PV identification algorithm (LR) that
leverages LDA and RF. And, we implement CNNmts-LR
which embeds LR in CNNmts-X framework to identify
the most important variables.

• We have conducted a deep analysis and mining of the
intermediate results from a CNNmts model.

• We have implemented several baseline approaches and
evaluated the effectiveness and efficiency of our pro-
posed techniques by using five real datasets in different
sizes. The experiments show that CNNmts-LR outper-
forms other methods.

The paper is organized as follows. Section 2 formally defines
the problem and related terminology. Section 3 presents our
proposed CNNmts-X framework and the new LR method.
Section 4 experimentally demonstrates the effectiveness and
efficiency of our proposed approaches using real datasets.
Section 5 discusses the literature. Finally, Section 6 concludes
our work.

2 PROBLEM FORMULATION AND TERMINOLOGY

This section introduces the terminology used to formally
formulate the problem that we are going to solve.
Definition 1. A variable for a multivariate time series is

a factor in the time series. If a multivariate time series
consists of observations for A variables, these variables
are denoted as a1, a2, · · · , aA.

In different applications that collect multivariate time series
data, variables represent different meanings. E.g., in human

body movement, a variable can be a sensor that is attached
to a specific part of a human body.

For each variable, values at different times can be
recorded. Such values form a sequence (or time series).
Formally,
Definition 2. An m-sequence S is in the form of (v1, t1),

(v2, t2), · · ·, (vm, tm) where ti < tj for 1 ≤ i < j ≤ m,
vi is either a categorical or a numerical value recorded
for one variable at time point ti, and m is the length (or
the number of temporal points) of the variable sequence.
When the time intervals between consecutive tis are
fixed, this sequence can be simplified to v1, v2, · · ·, vm.
Each sequence is for one variable.

Definition 3. An event type, denoted as et, is the phe-
nomenon that a study is interested in. Let E denote
the total number of event types. One event type can
have many corresponding instances. An event instance
is represented as eti.

In the study of human body movement, there can be 10-
20 different event types for people’s activities (e.g., sitting,
running). For each specific event type (e.g., sitting), there
can be hundreds or thousands of instances. Event types and
event instances in our problem are analogous to class labels
and instances in classification problems.
Definition 4. A multivariate time series (MTS) contains A

m-sequences. Formally, one MTS can be represented as v1,1 v1,2 · · · v1,m

v2,1 v2,2 · · · v2,m

· · · · · · · · · · · ·
vA,1 vA,2 · · · vA,m

 .

Each MTS corresponds to an event type (e.g., a person
is running) and records the values for all the variables that
contribute to the occurrence of one event.

To study what variables contribute more to an event,
all the variables for which an MTS is collected need to be
investigated. However, as discussed before, among all the
variables, different variables may contribute significantly to
different phenomena.
Definition 5. Phenomena-specific variables (PVs) for an

event type are the variables that contribute significantly
to the occurring of that event type.

Definition 6. The problem of identifying phenomena-
specific variables from MTS data takes as input (i)
a set of MTS associated with event types, and (ii) a
number σ(∈ (0, 1]), and finds the top bσ × Ac variables
{ai,1, · · · , ai,bσ×Ac} for each event type eti such that the
chosen variables contribute the most to characterize the
given event type.

3 CONVOLUTIONAL NEURAL NETWORKS BASED
APPROACH

This section presents a new framework CNNmts-X to iden-
tify PVs from multivariate time series.

Convolutional Neural Networks (CNN) are a special
type of neural networks (NN). A CNN has special hidden
layers, convolutional layers. Different from the hidden lay-
ers in regular NN, the nodes in convolutional layers are
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Fig. 1: CNNmts model for MTS (L convolutional layers and L−1 pooling layers)

only connected to a small region, which is called receptive
field, of the previous layer. The receptive fields are spatially
connected to capture the local spatial connectivity when a
CNN is utilized in image classification. This idea can be
utilized to capture the local temporal connectivity of time
series in MTS analysis.

The CNN model is adopted in our proposed framework
to address the major challenges that are discussed in Sec-
tion 1 because of two major reasons. First, in the analysis
of MTS, it is very necessary to capture the local temporal
connectivity in a time series [8], [11], [12], [13], [14], [15].
I.e., letting a subsequence contribute to one node in the next
layer. Convolutional layers with properly designed kernels
can help us achieve this. Second, CNN has shown good
performance in classifying large amount of data in very high
dimensional space [16], [17]; thus adopting CNN can help
reduce the computational complexity.

The CNN approach is capable of automatically extracting
features from the training datasets and utilizing such fea-
tures to recognize different phenomena. Note that these fea-
tures are combinations of different variables in the original
MTS. This work, however, does not target at purely recogniz-
ing the different phenomena utilizing the combined features. The
purpose of this work, as discussed in Section 1, is to identify
the variables (not combined features) that contribute the
most to specific phenomena. Thus, the original CNN method
cannot directly work to solve this PV identification problem.

The CNNmts-X framework works in two steps: (i) the
first step (Section 3.1) is to construct and train a CNNmts

model, and (ii) the second step (Section 3.2) is to design
a PV Identification (PVI) algorithm to extract significant
PVs from the intermediate results of the CNNmts models.
To verify the effect of PVs, classifications can be utilized.
Section 3.3 introduces the classification algorithm using the
PVs identified by CNNmts-X.

3.1 Proposed CNNmts model

The first step of the CNNmts-X framework is to train a
variant of the traditional CNN model (CNNmts) for MTS
data. To explain the concepts and the algorithms, we will
use a running example with the toy dataset in Example 1.

Example 1 (MTS toy data). Table 1 shows a toy dataset
with three real phenomena: playing basketball, rowing
machine, and Elevator UP. Assume that there are two
variables representing the height of the sensors attached
to the left arm (LA) and the left leg (LL).

Phenomenon Variables Time sequences

Playing Basketball (PB) LA 20, 40, 60, 80, 60, 40, 20
LL 4, 6, 5, 6, 5, 5, 6

Playing Basketball (PB) LA 10, 30, 50, 70, 50, 30, 10
LL 3, 5, 4, 4, 5, 4, 3

Rowing Machine (RM) LA 10, 15, 20, 25, 20, 15, 10
LL 4, 8, 12, 16, 12, 8, 4

Elevator UP (EU) LA 20, 70, 120, 170, 220, 270
LL 0, 50, 100, 150, 200, 250

TABLE 1: Toy dataset: LA represents the y-coordinate of
the left arm sensor and LL is the y-coordinate of the left
leg sensor

3.1.1 Structure of CNNmts
The CNNmts model is based on and improves the
model in [12]. Given an MTS training instance (Def. 4) v1,1 v1,2 · · · v1,m

· · · · · · · · ·
vA,1 vA,2 · · · vA,m

, Fig. 1 shows the structure of

our CNNmts model. This model contains L convolutional
layers, L−1 pooling layers, and one fully connected layer. In
the first convolutional layer, we apply F 1 filters with kernels
K1

1 , · · · ,K1
F 1 of size 1×k (1< k <m) to the subsequences

gotten by sliding a window (whose length is also k) over an
MTS instance. In particular, a node hi,j in the first convolu-
tional layer H1

1 is calculated as hi,j =
∑j+k−1
l=j vi,l · xl−j+1.

The different kernels differ in their initial values and are
utilized to remove the randomness caused by the kernel ini-
tialization. The first convolutional layer has F 1×A×(m−k+1)
nodes because each time series in an MTS instance has
length m and the number of subsequences gotten from
sliding a length-k window for each variable is m−k+1.

Our CNNmts model applies downsampling to get pool-
ing layers after each convolutional layer. The first pooling
layer is obtained by applying F 1 max pooling filters with
size 1×r to the first convolutional layer. In particular, a node
pi,j in the pooling layer P 1

1 is the maximum value of r corre-
sponding consecutive nodes in the immediate previous con-
volutional layer H1

1 . I.e., pi,j = maxj+r−1
l=j {hi,l}. The num-

ber of nodes in the first pooling layer is F 1×A×(m−k−r+2).
Our CNNmts model is different from the model in [12]
in that we use sliding windows to get the pooling layers,
while the model in [12] utilizes non-overlapping windows.
We take the sliding window strategy as we observe that
CNN models using sliding windows can achieve more stable
performance in each iteration.

Other convolutional and pooling layers are constructed
in a similar manner although the number of convolutional
kernels, the kernel sizes for different convolutional layers,
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and the sizes of pooling filters can be different. The kernel
size of the last convolutional layer is set to be the same
as the length of the time series output from the previous
pooling layer. The last convolutional layer is not followed
by any pooling layer. This is because both the convolutional
kernels and the pooling filters are not mixing values from
different variables, thus the time series of each variable has
been abstracted to exactly one corresponding node in the
last convolutional layer. Suppose that the last convolutional
layer is calculated using FL kernels, then each MTS training
instance is abstracted as FL×A nodes. For n instances,
this layer has n×FL × A nodes. The last convolutional
layer connects to a fully connected layer which generates
the output. The bottom of Fig. 1 shows the size of the
matrixes at the different layers of this CNNmts structure.
Table 2 summarizes the meaning of the major parameters in
CNNmts.

Example 2. For the dataset in Example 1, E = 3, A = 2,
n = 4, and m = 7. Assume that we set the number
of kernels for the different convolutional layers in a
CNNmts model to be F 1=50, F 2=40, and F 3=30. When
“playing basketball” is the positive class, the first two
instances are positive instances and the last two in-
stances are negative instances. The input to this CNNmts

is 4 × 7 × 2 (n × m × A) and the output of the last
convolutional layer is 4× 30× 2 (n×F 3×A). Similarly,
for the other two phenomena, each phenomenon has an
output object of size 4×30×2. Then, the total number of
output objects is 3×(4×30×2) for all the 3 phenomena.

Symbol Meaning
E # of distinct event types
A # of variables for an MTS dataset
n # of instances for an MTS dataset
m length of one time series in an MTS dataset
F i # of kernels in the ith convolutional layer of CNNmts

TABLE 2: Symbols

3.1.2 CNNmts for multiple event types
Different from existing methods (e.g., [12]), which generally
train one CNN model for all the event types. Our framework
constructs and trains a CNNmts model for each event type
et with the above described structure by treating the dataset
having only two event types (one has et and the other one
has ¬et). For all the E event types, we train E models
in total. The last convolutional layers of all these CNNmts

models contain E×(n×FL×A) nodes. These nodes represent
each variable as different numbers (instead of subsequences)
while encoding the temporal order of the sequences for this
variable. The numbers representing the variables may have
dependency relationships. However, there is no temporal
order among these numbers. Thus, they can be used to
extract PVs without considering the temporal dependency
relationships among values in sequences. Let us use L to
denote these nodes. The next step in Section 3.2 uses L to
extract PVs.

3.1.3 Process imbalanced data
The data for the proposed PV identification problem are
generally very imbalanced (one vs rest), simply applying

existing feature extraction approaches may not work well in
this case. We introduce a new strategy to process imbalanced
data when training the proposed CNNmts.

A CNNmts model is trained with multiple epochs [18]
and its training terminates when it meets certain criteria
such as the model accuracy is good enough. Each epoch
consists of dn/Be iterations (or steps) where B is the num-
ber of instances used in one iteration. In each iteration, the
sampled instances are fed to the model to adjust the model
parameters. The B instances used in one iteration is called
a batch. The batches of each epoch are typically generated
in a random manner: the first batch contains B (out of n)
randomly selected instances. This random-batch generation
strategy generally works well when the data have balanced
event types.

Random batch generation with adjusted coefficients. When
the data is imbalanced, one major issue with the default
batch generation is that the sampled instances in one batch
are imbalanced. A widely utilized strategy to alleviate this
issue is to give different coefficients to different event types.
Instances with rare event types are given higher coefficients
so that they can contribute more in deciding the output.
For example, if a batch contains 10 and 1000 instances
from two event types et1 and et2 respectively, then the
instance coefficients for et1 and et2 can be set to 100 and
1 respectively.

Batch generation with oversampling. We observe that the
strategy of adjusting coefficients may still not work well
when a batch has extremely unbalanced data. At the same
time, we observe that one batch may not utilize all the
necessary instances from rare event types because one batch
only consists of a subset of instances. Given these two
observations, we propose an oversampling strategy, which
has been utilized in processing imbalanced data [19]. This
oversampling strategy works as follows. After getting the B
instances for each batch, we calculate the ratio of instances in
different event types. If the ratio is low (e.g., less than 1/3 for
a dataset with two event types), we sample more instances
from the rare event types to this batch to make the instances
for different event types close-to-be balanced. Then, using
the actual number of instances of different event types in a
batch, we adjust the coefficients of the event types. The sizes
of batches generated by this strategy are bigger than B and
some instances are utilized several times in different batches
for one epoch.

3.2 Extract PVs from intermediate results of CNNmts
model

The second step of the CNNmts-X framework extracts sig-
nificant PVs from L with E×(n×FL×A) nodes. We pro-
pose Algorithm PVI (representing PV Identification, shown
in Fig. 2) for this step. This algorithm can use different
feature extraction techniques in Step 2(a)iii. Algorithm PVI
calculates an important score that each variable contributes
to every event type by aggregating the variable importance
from all the n instances and FL kernels.

Specifically, PVI works as follows. It first adds up the
importance scores of each variable from n instances and
saves the scores to an E×FL×A array ω (Step 2, details
see below). The score ω[et, f, ai] denotes the importance of
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Algorithm: PVI (L, Y , σ, A)
Input:
(1) L: E×n×FL×A array from CNNmts,
(2) Y : the event-type vector for n instances,
(3) σ and A: see problem definition.
Output: PVset: {PV1, PV2, · · · , PVE} where PVet consists of bσ ·Ac
PVs for the event type et
1) Initialize an E×FL×A array ω with score zero;

2) For each event type et (et=1· · ·E)
a) For each kernel f (f=1· · ·FL)

i) Let an n× A matrix Met,f = L[et, 1...n, f, 1...A];

ii) Normalize the values of each variable in Met,f ;

iii) ω[et, f, 1...A] = aggregateInstance(Met,f , Y, et); /*For a fixed
event type et and a kernel f , aggregate the importance of each variable
from all instances*/

3) Γ[1· · ·E, 1· · ·A]= aggregateKernel(ω, σ,E,A, FL); /*Calculate the im-
portance of each variable by combining the effect of the FL kernels*/

4) For each event type et
a) PVet = bσ·Ac variables with top ranks in Γ[et, 1· · ·A];

5) Return PVset:{PV1, PV2, · · · , PVE};

Fig. 2: The framework of PV identification
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the i-th variable ai to the event type et when using kernel f
by considering all the instances. Then, it combines the effect
of FL kernels (Step 3). Next, it extracts the PVs for each
event type from the combined ranks Γ (Step 4).

PVI calculates the importance scores ω (Step 2) using
three steps. First, for each distinct event type and each
of the FL kernels, it gets the node values from L, which
form an n×A matrix Met,f (Step 2(a)i). This matrix is
for all the n instances and A variables. Then, from matrix
Met,f , it calculates the importance of each variable to et by
aggregating scores for all the instances (Step 2(a)iii). Before
this step, we conduct column-wise normalization for all the
values in Met,f using the L∞-norm so that all the values for
one variable (in one column) are comparable.

Example 3. Given the data in Example 1, the size of L (the
input for the PVI Algorithm 2) is 3× (4× 30× 2). Step 2
aggregates the features learned from L using F 3 (which
is 30) kernels. The size ofMet,f is (4×2). aggregateInstance
returns the variable importance vector ω[et, f, 2] (A=2) in
Line 2(a)iii and aggregateKernel combines the importance
scores from each kernel. The final PVset is 3× (2× 50%)

if σ is set to be 50% (E is 3 and A is 2).

To further illustrate the procedure of the algorithm and
show how different data structures are changed, Fig. 3
shows a high-level data flow of this algorithm.

Function: aggregateInstanceLR (Met,f , Y, et)
Input: (1) Met,f : n × A matrix, (2) Y : event vector for n instances, (3) et:
a fixed event type
Output: ωet: a length-A score vector
1) Initialize a length-A vector ωet with returned scores;

2) Create a new length-n vector Y ′

3) For the j-th instance in Y
a) if (Y [j] == et) Y ′[j] = 1

b) else Y ′[j] = 0

4) ωLDA
et ,ACCLDA = Run LDA usingMet,f and Y ′ as input and output

one coefficient vector ωLDA
et (length A) and training accuracy ACCLDA;

5) ωRF
et , ACCRF = Run RF using Met,f and Y ′ as input and output one

coefficient vector ωRF
et (length A) and training accuracy ACCRF ;

6) ωLR
et =ωLDA

et × ACCLDA + ωRF
et × ACC

RF

7) Return ωLR
et ;

Fig. 4: Calculate variable importance using LR

3.2.1 A new algorithm LR to calculate variable importance
In the CNNmts-X framework, X can be any feature extrac-
tion technique. We propose a new approach that leverages
both Linear Discriminant Analysis (LDA) [9] and Random
Forest (RF) [10]. LDA identifies linear combinations of vari-
ables as features. Such features can explicitly model the dif-
ference between different classes [20]. However, LDA cannot
directly return the variable importance. We use the weight
values to estimate variable importance since a variable with
higher weight means it contributes more to the combined
feature. RF is another widely used technique to rank the
importance of variables in a regression or classification
problem [21]. RF can directly return the variable importance
but RF focuses on each individual variable instead of the
variable combinations.

To make use of good characteristics of LDA and RF, we
propose a new approach LR to learn a combined variable
importance. Fig. 4 shows this approach as Function aggre-
gateInstanceLR. This function calculates the importance of
all the A variables for a given event type et and keeps them
in a length-A vector ωet (defined at Step 1 in Fig. 4).

More specifically, it creates a new vector Y ′ whose
element values are either zero or one denoting two dis-
tinct event types. Here, only two distinct event types
are used because PVs are used to distinguish one event
type from all the other event types. The value is one
when the corresponding actual event type is et and is
zero otherwise. LDA is conducted using Met,f and the
new event vector Y ′ (shown from Line 4 in Fig. 4). This
procedure can be formally represented as shown below.M [1, 1] M [1, 2] · · · M [1, A]
M [2, 1] M [2, 2] · · · M [2, A]
· · · · · · · · ·

M [n, 1] M [n, 2] · · · M [n,A]︸ ︷︷ ︸
y′1
y′2
· · ·
y′n︸︷︷︸
→( cet,1 · · · cet,Ac¬et,1· · ·c¬et,A

)
︸ ︷︷ ︸

Met,f Y ′ for et ωLDA
et

Note that the values of the first row of ωLDAet is the same
as the second row. This is because the first row consists
of coefficients that differentiate et and all the other event
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types (only ¬et), and the second row has coefficients to
differentiate ¬et from all the other types (only et).

Line 5 in Fig. 4 utilizes RF to evaluate the variable
importance. As shown from Lines 4 and 5, the training
accuracies from LDA and RF are both returned. The training
accuracy for each approach is used to weigh the important
scores of the variables. The final variable importance is the
weighted summation of the variable weights returned from
LDA and RF where the weights are the training accuracies
in LDA and RF (Line 6).
Example 4. Let us follow the previous example to explain

Algorithm 4. The input Met,f is of size 4× 2 (n×A).
Line 4 and Line 5 evaluate the variable importance using
LDA and RF respectively. Line 6 combines the two
importance scores. The final output is a vector of size
(1× 2) with the variable importance scores.

3.2.2 Ensemble variable importance
The last step of the Algorithm PVI (Fig. 2) is to ensemble
variable importance for all the kernels based on the calcu-
lated importance scores ω from all the n instances and FL

different kernels. Fig. 5 shows the details of this step.

Function: aggregateKernel (ω, σ,E,A, FL)
Output: an E×A matrix Γ denoting the importance rank of every variable
to all event types.
1) Initialize Γ to be an E×A matrix;

2) For each distinct event type et
a) Initialize an FL×A rank matrix γ with value zero;

b) For each kernel f and each variable ai,
i) Let γ[f, ai] = the rank (in descending order) of ω[et, f, ai]

among the A elements in ω[et, f, 1 · · ·A]

c) For each variable ai, Γ[et, ai] = aggF
L

f=1γ[f, ai]

3) Return Γ;

Fig. 5: Calculate variable importance by combining results
from different kernels

This function ensembles the importance scores for each
event type. For an event type et, it first ranks the importance
of all the variables for each kernel (Step 2b). The ranking
results are kept in an FL×A rank matrix γ. Then, it calculates
the overall importance of each variable ai for a fixed event
type by aggregating the importance ranks from all the
kernels (Step 2c). The importance ranks of all the variables
to the different kernels Γ are returned to PVI to extract PVs.
Note that we do not directly utilize the importance scores
in ω to extract the significant PVs. Instead, we utilize the
importance ranks. This strategy is to remove the effect of
unbalanced importance scores.

Time: The running time of the CNNmts-X PVI approach
consists of two stages: learning CNNmts and conducting X.
Given a dataset with E events, in the worst case we need
to learn E CNNmts models. We also note that in many real
cases, the number of CNNmts models that we need to train
depends on the number of phenomena that people are inter-
ested in. We may not need to get the important variables for
all the E phenomena. For example, one scientist may only
be interested in two phenomena (among hundreds), then
our method just needs to train two CNNmts models (instead
of hundreds of models) to identify those variables. The exact

time complexity of learning the CNN model is beyond our
control. Thus, we empirically calculate the running time of
the PVI algorithms. The results and analysis can be found in
Section 4.4.

Algorithm: PVC (L, Y , A)
Input:
(1) Xtr : training data: ntr×A×m,
(2) Ytr : training labels with length ntr

(3) Xte: testing data: nte×A×m,
(4) Yte: testing labels with length nte

(5) PVset: Set of PVs from PVI algorithm in Fig. 2
Output: F1 vector and overall Accuracy
1) Initialize a vector Prob: nte×E with zeros;

2) Initialize a vector F1: E×1 with zeros;

3) For each event type et (et=1· · ·E)
a) Generate training sub-matrix X′tr : ntr × |PVet| ×m where each

instance only contains the time series from PVet variables

b) Generate testing sub-matrix X′te: nte × |PVet| ×m where each
instance only contains the time series from PVet variables

c) Create a vector Y ′tr with length ntr and a vector Y ′te with nte to
hold the binary class labels for training and testing data respectively

d) For the j-th instance in Ytr

i) if (Ytr[j] == et) Y ′tr[j] = 1 else Y ′tr[j] = 0

e) For the j-th instance in Yte

i) if (Yte[j] == et) Y ′te[j] = 1 else Y ′te[j] = 0

f) Train classification model PVMet using X′tr and Y ′tr
g) Apply PVMet to testing X′te and get prediction Y ′pred and assign

the prediction probability to Prob[0 . . .nte, et]

h) F1[et] = F1 score calculated from the prediction Y ′pred and Y ′te
4) Ypred=argmax(Prob)

5) Accuracy is calculated based on Yte and Ypred

6) Return F1 vector and Accuracy

Fig. 6: Classifications using PVs

3.3 Classification using PVs
PVs are identified to differentiate different phenomena. PVs’
differentiating effect cannot be tested by directly applying
existing classification algorithms because PVs are specific to
different phenomena. In order to examine the effect of PVs,
we design a PV-based classification algorithm.

PV classification (PVC) algorithm is used to run classifi-
cations based on PVs. Fig. 6 shows the detailed procedure of
this algorithm. This algorithm returns a vector of F1 values
for all the E classes (or event types) and the overall testing
Accuracy. In particular, this algorithm tests the PVs’ effect
for each et (Line 3). For a given et, it truncates the training
and testing data to contain only time series related to this
event type’s related PVs (Lines 3a-3b). Also, it updates the
training and testing labels to contain only et (denoted as
one) and ¬et (denoted as zero) (Lines 3c-3e). Then, it trains
a classification model to get the classification F1 value and
the prediction probability (Lines 3f-3h) over classes et and
¬et. The final prediction is the class label with the highest
probability (Line 4). The overallAccuracy is calculated from
the final prediction (Line 5).

4 EXPERIMENTS

All the methods are implemented using Python 2.7, and
tested on a server with i7-2600 CPU cores @ 3.40GHz and
256GB RAM. TensorFlow (www.tensorflow.org) is used to
build our neural network framework.
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4.1 Methods to compare
Method PVI

CNNmts-LR LR is used to identify PVs in CNNmts-X
CNNmts-LDA LDA is used to identify PVs in CNNmts-X
CNNmts-RF RF is used to identify PVs in CNNmts-X

CNNmts-PCA PCA is used to identify PVs in CNNmts-X
CNNmts-CPCA CPCA [3] is used to identify PVs in CNNmts-X

LR LR is used to identify PVs without CNNmts-X
LDA LDA is used to identify PVs without CNNmts-X
RF RF is used to identify PVs without CNNmts-X

PCA PCA is used to identify PVs without CNNmts-X
CPCA CPCA is used to identify PVs without CNNmts-X

TABLE 3: PV selection methods to compare

To better understand the advantages/disadvantages of
different PV identification methods, we compare the effect
of the PVs selected by the proposed method and several
other baseline methods. All the methods are listed in Table 3.

Our proposed method is denoted as CNNmts-LR. We
also adopt LDA and RF alone in the CNNmts-X framework
and get two baseline methods CNNmts-LDA and CNNmts-
RF. In particular, CNNmts-LDA and CNNmts-RF return
wLDAet and wRFet respectively in Fig. 4. Furthermore, since
Principal Component Analysis (PCA) [22], [23] is another
well-recognized classical feature extraction technique, we
adopt PCA in the CNNmts-X framework and get CNNmts-
PCA. Another approach based on Common PCA (CPCA) [3]
can identify important global variables, we adopt CPCA in
our framework and get CNNmts-CPCA. CNNmst- PCA (or
CNNmts-CPCA) calls PCA (or CPCA) only on the instances
from class et instead of on all the instances. The details of
CNNmts-PCA can be found from Fig. 7. For CNNmts-CPCA,
CPCA is used at Line 4.

Function: aggregateInstancePCA (Met,f , Y, et)
/*The parameters have the same meaning as those in aggregateInstanceLR*/
1) Initialize a length-A vector ωet with returned scores;

2) Create a new empty matrix M ′et,f ;

3) For the j-th instance in Y
a) if (Y [j] == et) Append Met,f [j] to M ′et,f as a new row;

4) W = Run PCA over M ′et,f and get a A× A matrix;

5) ωPCA
et = sum the absolute weight values from all the columns (principle

components) in W for each row (variable) and get a length-A vector;

6) Return ωPCA
et ;

Fig. 7: Calculate variable importance using PCA

We also compare our proposed method with other
techniques that does not employ our proposed CNNmts-X
framework. Corresponding to the five methods that utilize
CNNmts-X framework, the five baseline approaches are LR,
LDA, RF, PCA, and CPCA. These five baseline methods
learn importance scores of each variable for different event
types and select the variables with the top bσ ·Ac absolute
importance scores as PVs. For the LR method, the impor-
tance scores of all the variables to an event type et are the
weighted summation of the variable scores returned from
LDA and RF. The variable scores from LDA are calculated
based on the coefficients (cet,1, · · · , cet,A), while the variable
scores from RF directly come from the trained RF model.
For the PCA (or CPCA) methods, the importance scores are

learned as follows. For each event type, we first conduct
PCA (or CPCA) on all the training instances with event type
et. Then, we calculate each variable’s importance by adding
the absolute weight values of the PCs for this variable.
Higher weight values carry more importance.

The effect of the proposed PVs are also compared with
the effect of all the variables (denoted as All-variables) and
top global variables (denoted as CNNmts-LR-GV). The All-
variables method directly feeds all the values vij in an MTS
to E CNNmts classifiers for the E event types. CNNmts-LR-
GV is designed based on CNNmts-LR method. It utilizes the
intermediate results Γ (Step 3 in the PVI algorithm in Fig. 2)

from CNNmts-LR. From Γ =

(
Γ[1, 1] · · · Γ[1, A]
Γ[2, 1] · · · Γ[2, A]
· · · · · · · · ·

Γ[E, 1] · · · Γ[E,A]

)
, each

column’s values (the importance rank of each variable for
different event types) are added to get the overall impor-
tance rank of the variables. The bσ·Ac variables with the top
overall ranks are chosen as significant global variables.

Dataset n E A m
DSA 9120 19 45 125
RAR 35350 33 117 20
ARC 78051 18 107 30

ARCfixed 78051 18 107 30
ASL 2565 95 22 90

TABLE 4: Dataset statistics

4.2 Experimental settings

(1) Datasets: We use five real datasets to test the perfor-
mance of our approaches. The first dataset is the Daily
and Sports Activities data (denoted as DSA) [24]. The sec-
ond dataset is extracted from the ideal-placement scenario
in the REALDISP Activity Recognition data (denoted as
RAR) [25]. The third and the fourth datasets are the Activ-
ity Recognition Challenge data from opportunistic activity
recognition systems for subject 1 (denoted as ARC) [26]. The
fourth dataset also comes from the ARC dataset, but it has
fixed training and testing portion used in [12]. This dataset is
denoted as ARCfixed and utilized for comparison with [12].
The last dataset is for Australian Sign Language (ASL) [27].
The detailed statistics for the datasets are shown in Table 4.

For DSA, RAR, and ARC datasets, we run ten-fold cross-
validation to get stable results. For ASL, we run three-
fold cross validation. We did not use ten folds because the
number of instances in each class is not as many as in the
other datasets.
(2) Evaluation measurements: We utilize two ways to evalu-
ate the effectiveness of the selected PVs: (a) conducting clas-
sification using the selected PVs, significant global variables,
and all the variables (Sections 4.3.1-4.3.3) and (b) manually
examining the meaning of the extracted PVs (Section 4.3.4).
Section 4.3.5 compares the selected PVs with existing works.
For classification, we feed the training instances with only
the selected variables to train E classifiers. Given a testing
instance, the prediction from one classifier (for event type
et) is the probability that the testing instance is predicted
as et. The final event-type prediction of this instance is the
type with the highest probability. We report the classification
measurements, F1 and Accuracy, to show the performance.
To eliminate the bias of classification techniques, we utilize
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four widely adopted classification methods, convolutional
neural network (CNN) [28], k-nearest neighbors (KNN) [29],
support vector machine (SVM) [30] and random forest
(RF) [10]. TensorFlow is used to build the CNN classifier and
Python library [31] is used to run the KNN and RF classifiers.
For the SVM classifier, we obtain the code provided by
Python library LibSVM [32] since it gets similar accuracy
with less running time than the typical SVM from [31]. Note
that the traditional F1 is used to measure the performance
of binary classifiers. In our experiments, each dataset has
more than two event types. We calculate F1 for each event
type by treating all the instances belonging to this type as
positive and all the other instances as negative.
(3) Parameter setting: The parameters used to train the
CNNmts models for both the PV selection and for the clas-
sification task are the same. The numbers of convolutional
layers and pooling layers are set to be 3 and 2 respectively.
For the convolutional layers, the kernel sizes k are 50, 30,
and 20. For the pooling layers, the filter size r is 2. The
maximum number of epochs is 5, and the batch size B is
100. For the classifiers, KNN sets the parameter K to be 1.
LibSVM uses balanced class weights and sets Radial Basis
Function (RBF) as the kernel. We are aware that setting
different parameter values to achieve good classification
performance is still an open problem and that is not the
focus of this paper. Meanwhile, we also run experiments
with different parameter values to justify our parameter
setting (Sections 4.3.7).

4.3 Effective analysis
This section shows the classification performance for all the
datasets. In particular, we examine the F1 for all the event
types and overall Accuracy. The calculation details for the
F1 and overallAccuracy are shown from the PVC algorithm
in Fig. 6.

4.3.1 Compare the effect of PVs using different PV selec-
tion approaches
This section compares the effect of PVs selected by the ten
PV selection approaches listed in Table 3. The results in
Table 5 show that the CNNmts-LR approach outperforms the
other nine PV selection approaches in most cases. CNNmts-
LR provides the best F1 with CNNmts classifier on all
datasets and it has comparably good results with other
classifiers (top 3 F1 values from KNN and LibSVM and
top 2 F1 values from RF). The accuracy results (Appendix
A) show similar conclusions. For most data mining and
machine learning methods, generally there is no absolute
winner in all cases. In order to show the superiority of
the proposed method, we calculate the averaged F1 and
averaged Accuracy over all the five datasets and show the
results in Table 6 and Table 7. These tables show that
the proposed approach achieves the best averaged F1 and
averaged Accuracy. We also plot the individual F1 values for
all phenomena in different datasets (Figure 8, Appendix B),
which are consistent with the overall F1 performance.
4.3.2 Compare the proposed CNN model with others
This set of experiments compares the proposed CNNmts

model with another CNN baseline, Fully Convolutional
Networks (FCN) [11]. FCN is proposed as a strong baseline

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.928 [1] 0.946 [1] 0.962 [1] 0.628 [1] 0.788 [1]

CNNmts-LDA 0.906 [2] 0.934 [2] 0.937 [7] 0.600 [3] 0.418 [9]
CNNmts-PCA 0.831 [10] 0.926 [3] 0.956 [2] 0.489 [8] 0.499 [6]

CNNmts-CPCA 0.895 [6] 0.876 [6] 0.921 [9] 0.441 [9] 0.369 [10]
CNNmts-RF 0.897 [4] 0.902 [4] 0.950 [4] 0.596 [5] 0.669 [4]

LR 0.903 [3] 0.852 [8] 0.940 [6] 0.597 [4] 0.761 [2]
LDA 0.897 [4] 0.698 [10] 0.937 [7] 0.557 [7] 0.503 [5]
PCA 0.873 [9] 0.841 [9] 0.946 [5] 0.418 [10] 0.429 [8]
CPCA 0.887 [7] 0.858 [7] 0.919 [10] 0.492 [6] 0.448 [7]

RF 0.887 [7] 0.899 [5] 0.952 [3] 0.624 [2] 0.706 [3]
(a) CNNmts classifier (CNNmts-LR always ranks top 1)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.872 [2] 0.897 [2] 0.962 [3] 0.530 [1] 0.634 [2]

CNNmts-LDA 0.727 [9] 0.907 [1] 0.922 [5] 0.483 [4] 0.418 [6]
CNNmts-PCA 0.751 [4] 0.883 [3] 0.902 [7] 0.381 [10] 0.510 [5]

CNNmts-CPCA 0.743 [7] 0.837 [5] 0.896 [9] 0.383 [9] 0.314 [8]
CNNmts-RF 0.666 [10] 0.833 [6] 0.960 [4] 0.528 [2] 0.669 [1]

LR 0.854 [3] 0.771 [9] 0.966 [1] 0.452 [6] 0.588 [4]
LDA 0.903 [1] 0.641 [10] 0.912 [6] 0.444 [7] 0.360 [7]
PCA 0.738 [8] 0.830 [7] 0.898 [8] 0.430 [8] 0.309 [10]
CPCA 0.744 [6] 0.806 [8] 0.853 [10] 0.372 [5] 0.312 [9]

RF 0.746 [5] 0.863 [4] 0.965 [2] 0.516 [3] 0.610 [3]
(b) KNN classifier (CNNmts-LR always ranks top 3)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.721 [2] 0.645 [2] 0.730 [1] 0.516 [1] 0.407 [2]

CNNmts-LDA 0.518 [8] 0.461 [7] 0.594 [7] 0.325 [7] 0.237 [6]
CNNmts-PCA 0.339 [10] 0.249 [10] 0.672 [5] 0.130 [9] 0.291 [5]

CNNmts-CPCA 0.582 [5] 0.542 [4] 0.684 [4] 0.411 [8] 0.173 [8]
CNNmst- RF 0.552 [6] 0.517 [6] 0.693 [3] 0.349 [5] 0.413 [1]

LR 0.611 [4] 0.650 [1] 0.711 [2] 0.452 [2] 0.380 [4]
LDA 0.643 [3] 0.402 [8] 0.570 [10] 0.435 [3] 0.192 [7]
PCA 0.441 [9] 0.522 [5] 0.573 [9] 0.110 [10] 0.157 [10]
CPCA 0.547 [7] 0.547[3] 0.589[8] 0.472 [4] 0.167 [9]

RF 0.723 [1] 0.275 [9] 0.662 [6] 0.337 [6] 0.393 [3]
(c) LibSVM classifier (CNNmts-LR always ranks top 2)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.786 [1] 0.710 [2] 0.767 [2] 0.355 [2] 0.553 [1]

CNNmts-LDA 0.782 [3] 0.712 [1] 0.636 [7] 0.264 [9] 0.401 [5]
CNNmts-PCA 0.577 [10] 0.706 [3] 0.359 [10] 0.232 [10] 0.398 [6]

CNNmts-CPCA 0.775 [4] 0.685 [4] 0.406 [9] 0.351 [4] 0.293 [8]
CNNmst- RF 0.772 [7] 0.673 [6] 0.743 [4] 0.347 [5] 0.513 [3]

LR 0.773 [5] 0.643 [7] 0.786 [1] 0.352 [3] 0.508 [4]
LDA 0.731 [8] 0.385 [10] 0.719 [5] 0.307 [8] 0.361 [7]
PCA 0.785 [2] 0.481 [8] 0.653 [6] 0.332 [7] 0.216 [10]
CPCA 0.699 [9] 0.448 [9] 0.612 [8] 0.339 [6] 0.278 [9]

RF 0.773 [5] 0.681 [5] 0.761 [3] 0.360 [1] 0.516 [2]
(d) RF classifier (CNNmts-LR always ranks top 2)

TABLE 5: F1 for different variable selection methods (Top
30% of PVs are selected). The values in [] denote the ranks
of the classifier in a row to classify the dataset in a column.

Method CNN KNN LibSVM RF
CNNmts-LR 0.850 0.779 0.604 0.634

CNNmts-LDA 0.759 0.691 0.427 0.559
CNNmts-PCA 0.740 0.685 0.336 0.454

CNNmts-CPCA 0.700 0.635 0.478 0.502
CNNmts-RF 0.803 0.731 0.505 0.609

LR 0.810 0.726 0.561 0.612
LDA 0.718 0.652 0.448 0.501
PCA 0.701 0.641 0.361 0.493

CPCA 0.721 0.617 0.464 0.475
RF 0.814 0.740 0.478 0.618

TABLE 6: Averaged F1 over all five datasets

for image classification. FCN has only a global pooling layer
before the final output layer (instead of a pooling layer
after every convolutional layer). FCN may not be a good
choice in MTS feature selection because the pooling layer
after each convolutional layer helps identify the similar
features in a time range. For example, two people are
conducting the same activity, hand up-down movement,
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Method CNN KNN LibSVM RF
CNNmts-LR 0.920 0.839 0.675 0.863

CNNmts-LDA 0.823 0.763 0.546 0.826
CNNmts-PCA 0.832 0.747 0.471 0.755

CNNmts-CPCA 0.789 0.710 0.544 0.722
CNNmts-RF 0.867 0.790 0.601 0.853

LR 0.896 0.799 0.653 0.858
LDA 0.786 0.744 0.551 0.803
PCA 0.816 0.728 0.528 0.746

CPCA 0.827 0.639 0.559 0.741
RF 0.899 0.706 0.594 0.853

TABLE 7: Averaged Accuracy over all five datasets

time stamp 1 2 3 4 5
Person 1 30 cm 50 cm 70 cm 50 cm 30 cm
Person 2 0 40 cm 80 cm 40 cm 0

(a) Before pooling layer

time stamp 1 2 3 4
Person 1 50 cm 70 cm 70 cm 50 cm
Person 2 40 cm 80 cm 80 cm 40 cm

(b) After pooling layer (size = 2)

TABLE 8: Example: Location of sensor y on a hand

with different speed: the first person moves his/her hand
slowly, with 20 cm up/down per second, and the second
person move his/her hand faster, with 40 cm up/down
per second. Table 8(a) shows the location of the y sensor
on one hand for five time stamps. Table 8(b) shows the
results after a max pooling with size 1 × 2. It is clear that
this pooling layer amplifies the similarity between these two
time sequences. The next convolutional layer can utilize the
amplified similarity. However, in FCN (without a pooling
layer after each convolutional layer), the next convolutional
layer cannot utilize any amplified similarity.

We use the FCN model to replace the CNNmts model
in our proposed CNNmts-LR method and get a FCN-LR
method. Table 9 shows the results of comparing FCN-LR
and CNNmts-LR. It can be observed that features learned
from CNNmts-LR outperforms the features from FCN-LR
in almost all cases. The overall Accuracy results (Table 20,
Appendix A) are similar to the results on F1. Therefore, we
use CNNmts instead of FCN as the CNN classifier in the PVC
algorithm.

4.3.3 Compare the effect of PVs, selected global variables,
and all the variables
This section evaluates the performance of the PVs found
using the proposed CNNmts-LR method, global variables
discovered using CNNmts-LR-GV, as well as all the vari-
ables. Section 4.3.1 demonstrates that classifications using
PVs from CNNmts-LR return the best performance. Given
this, the global variables discovered in this section are based
on CNNmts-LR (denoted as CNNmts-LR-GV). For this set of
experiments, the All-variables approach uses all the variables
to run classification, while CNNmts-LR and CNNmts-LR-
GV select approximately 30% of all the variables. Different
classification algorithms are applied in oder to get unbiased
results. The F1 using different classifiers are shown in
Table 10. The results show that classification using the top
30% of PVs from CNNmts-LR achieves similar or even better
F1 values compared with the classification results using
all the variables. Note that our method does not perform
better than the method using all the variables all the time.
It is mainly because of the characteristics of the data. When

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.928 0.946 0.962 0.628 0.788

FCN-LR 0.889 0.941 0.955 0.611 0.769
(a) CNNmts classifier

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.872 0.897 0.962 0.530 0.634

FCN-LR 0.761 0.892 0.955 0.500 0.604
(b) KNN classifier

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.721 0.645 0.730 0.516 0.407

FCN-LR 0.685 0.547 0.712 0.520 0.397
(c) LibSVM classifier

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.786 0.710 0.767 0.355 0.553

FCN-LR 0.802 0.669 0.764 0.347 0.510
(d) RF classifier

TABLE 9: F1 comparison using the top 30% PVs from
CNNmts-LR and FCN-LR.

Method DSA RAR ARC ARCfixed ASL
All-variables 0.956 0.953 0.975 0.592 0.802
CNNmts-LR 0.928 0.946 0.962 0.628 0.788

CNNmts-LR-GV 0.895 0.817 0.859 0.295 0.591
(a) CNNmts classifier

Method DSA RAR ARC ARCfixed ASL
All-variables 0.778 0.900 0.920 0.440 0.654
CNNmts-LR 0.872 0.897 0.962 0.530 0.634

CNNmts-LR-GV 0.742 0.715 0.658 0.162 0.448
(b) KNN classifier

Method DSA RAR ARC ARCfixed ASL
All-variables 0.604 0.593 0.695 0.532 0.392
CNNmts-LR 0.721 0.645 0.730 0.516 0.407

CNNmts-LR-GV 0.555 0.502 0.282 0.177 0.202
(c) LibSVM classifier

Method DSA RAR ARC ARCfixed ASL
All-variables 0.789 0.616 0.756 0.299 0.559
CNNmts-LR 0.786 0.710 0.767 0.355 0.553

CNNmts-LR-GV 0.731 0.458 0.484 0.094 0.339
(d) RF classifier

TABLE 10: F1 (Classification using all the variables, top
30% of PVs, and top 30% of GVs)

the dataset has noisy variables, our PV selection approach
is able to identify the important non-noisy variables and
utilize them for classification and such classification gener-
ally has better performance than the method using all the
variables. On the other hand, when all the variables in a
dataset are very useful (i.e., no noisy variables), the PV
selection approach then misses some variable information
and gets slightly worse performance than the method using
all the variables.

These results indicate that the 30% PVs identified from
CNNmts-LR are able to capture the significant variables and
discard other noisy variables. The results also demonstrates
that classifications using PVs generate much better F1 val-
ues than classifications using GVs from CNNmts-LR-GV.
This is consistent with our expectation and intuition since
GVs are important variables for all the class labels and PVs
are important variables for different class labels. We also get
the overall Accuracy values (Table 21, Appendix A), which
show similar results as F1, and the individual F1 values for
all phenomena in different datasets (Figure 9, Appendix B),
which are consistent with the rank of the overall F1 values.
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Phenomena Playing Basketball Rowing machine
Top 1 PV y gyroscopes (left arm) x magnetometers (left leg)
Top 2 PV x gyroscopes (left arm) x magnetometers (right leg)
Top 3 PV y gyroscopes (right arm) x magnetometers (torso)
Top 4 PV x gyroscopes (right arm) x accelerometers (left arm)
Top 5 PV y accelerometers (left arm) x accelerometers (right arm)
Top 6 PV y accelerometers (right arm) x accelerometers (left leg)

(a) DSA Dataset

Phenomena Please stubborn
Top 1 PV roll (right hand) Middle finger bend (left hand)
Top 2 PV y position (right hand) Middle finger bend (right hand)
Top 3 PV Forefinger bend (right hand) Little finger bend (left hand)
Top 4 PV Middle finger bend (right hand) Forefinger bend (right hand)
Top 5 PV Little finger bend (right hand) Forefinger bend (left hand)
Top 6 PV yaw (right hand) left leg x accelerometers

(b) ASL Dataset

TABLE 11: Top 6 PVs selected for two phenomena

4.3.4 Case studies of the extracted features

In this section, we manually verify the usefulness of the
extracted features. We show a few number of PVs learned
from our CNNmts-LR model for the different classes in the
DSA and ASL datasets where DSA represents the human
activity domain and ASL represents the sign language
domain. In the DSA dataset, there are three groups of
variables, accelerometers, gyroscopes, and magnetometers.
An accelerometer records the tilt relative to the earth’s
surface, a magnetometer keeps the heading direction if a
person holds the sensor that is parallel to the ground, and
a gyroscope sensor keeps rotational velocity without any
absolute reference. Those sensors are placed on the torso,
left arm, right arm, left leg, and right leg. Table 11(a) shows
the top 6 PVs learned on DSA. The first phenomenon is
“playing basketball”, which is an activity of bouncing the
basketball repeatedly using two arms. We can see that all
the top 6 PVs for this activity are related to left arm and
right arm. In addition, the x and y gyroscopes for both
two arms are the top 4 attributes because the arms are
rotating while bouncing a ball. The 5th and 6th attributes
are the y accelerometers for two arms. They are picked to
capture the up-down movement while playing. These PVs
are reasonable to identify the “playing basketball” activity.
Consider another activity in the DSA dataset, “Rowing
machine”, which is an activity requiring the whole body
to move, we show its top six variables in the third column
of Table 11(a). These 6 PVs represent the sensors from torso,
arms, and legs. Magnetometers and accelerometers are more
helpful to identify this activity because rowing is a forward-
backward activity.

Table 11(b) presents the analysis of two phenomena from
the ASL dataset. The first phenomenon is “Please” [33],
which bends all four fingers without the thumb finger of
the right hand. Meanwhile, the right hand needs to move
upward-downward. The corresponding top 6 PVs are all
from the right hand. The top PVs contain the roll, y position,
yaw sensors (which are gyroscopic devices) from the right
hand and the bend sensors from three fingers (not the thumb
finger). The second phenomenon is “Stubborn” [34], for
which both hands bend four fingers without the middle
finger, and two hands move both vertically and horizon-
tally. The selected top 6 PVs are bend sensors and the x
accelerometers from both hands, which are consistent with

the sign language.

Method CNNmts KNN LibSVM
CNNmts-LR 0.628 0.530 0.516
CNN in [12] 0.555 0.427 0.456

(a) F1

Method CNNmts KNN LibSVM
CNNmts-LR 0.889 0.856 0.840
CNN in [12] 0.870 0.793 0.838

(b) Accuracy

TABLE 12: Overall comparison with CNNmts-LR and
CNN in [12] (ARCfixed)

KNN F1 Accuracy Time (sec.)

Shapeletall 0.881 0.917 85

ShapeletPV 0.888 0.914 1.75

TABLE 13: Performance comparison of shapelets ex-
tracted from the overall MTS and from PV sequences
(DSA)

MASK shapNum shapMin shapMax Time (Sec)

ASL 10 3 5 > 1.4× 104 (4 hours)
(a) Running Time

Method CNNmts KNN LibSVM RF
CNNmts-LR 0.788 0.634 0.407 0.553
MASK in [35] 0.473 0.382 0.214 0.347

(b) F1

TABLE 14: Performance comparison with CNNmts-LR
and MASK on ASL

4.3.5 Compare the effect of PVs and existing work
This set of experiments compares the classification perfor-
mance using the PVs selected by CNNmts-LR and two other
state-of-the-art approaches: the CNN model in [12] and mul-
tivariate shapelet in [4]. The PVs from CNNmts-LR cannot be
directly applied to the CNN [12] model since the PVs found
in our work are phenomenon specific. However, we still
report the F1 and overall accuracy for reference. We directly
get the F1 and accuracy from [12] (without smoothing)
using ARCfixed (RF is not used in [12]). Table 12 (a) and
(b) report the F1 and the overall accuracy respectively. The
results show that classification using the PVs gets better
F1 and overall accuracy. This is due to the new variant of
the CNN model, CNNmts, and the PV based classification
algorithm, PVC.

Next, we compare the classification performance using
shapelets. Note that the focus of shapelet extraction is dif-
ferent from PV identification: shapelets are the important
subsequences in the sequences of multiple variables, while
PVs are the important variables. I.e., they are orthogonal and
complement with each other. Given these differences, we
compare the classification performance using shapelets that
are generated from the overall MTS and from the sequences
for PVs. We have implemented two versions of the shapelet
generation. The first version directly extracts shapelets from
the overall MTS (denoted as Shapeletall). The second version
extracts shapelets from the sequences whose corresponding
variables are identified as PVs (denoted as ShapeletPV ).
Table 13 presents the classification results using the shaplet
features of the two versions for the DSA dataset. Shapelet
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generation is known to be time-consuming [36]. Therefore,
the DSA dataset is used because it has fewer instances than
RAR and ARC datasets and has a much smaller number of
classes than ASL. The results show that the shaplets gener-
ated using PVs can achieve similar accuracy as the shapelets
identified from all the variables, while the ShapeletPV uses
only ∼20% of the time used for Shapeletall.

Table 14 compares our proposed approach with another
recent approach, MASK [35]. MASK identifies the shapelet
from time-series sequences and returns a mask to evaluate
the importance of different variables. We note that MASK is
very time consuming and performs poorly on imbalanced
data. For the smallest data set (ASL), MASK runs around 4
hours for one class even when the parameter values are set
to be small (for larger parameter values, the algorithms runs
much longer time). The setting details and running time are
shown in Table 14(a). Furthermore, Table 14(b) shows that
the CNNmts achieves ∼20% better F1 scores than MASK.

4.3.6 Compare batch processing strategies of CNNmts for
imbalanced data
This set of experiments tests the effect of batch processing
strategies on the RAR dataset as it contains imbalanced data.
CNNmts-LR is used to select the top significant 30% PVs
and CNNmts classifiers are used to conduct ten-fold cross
validation. Table 15 shows the results. The first two rows of

Batch processing strategy
CNNmts-LR Classifier CNNmts F1 Accuracy

without oversampling without oversampling 0.813 0.866
without oversampling with oversampling 0.902 0.910

with oversampling with oversampling 0.946 0.971

TABLE 15: Effect of different batch processing strategies
(CNNmts-LR, RAR dataset, ten-fold)

the results show that when the PVs are fixed, the classifier
with oversampling can improve both the F1 and Accuracy
about 9% and 4% respectively. Comparing the last two rows,
we can see that, when the classifier is fixed, PV selection
with oversampling can improve both the F1 and Accuracy
about 4% and 6%.

All these show that CNNmts with the oversampling
batch processing strategy works better than the default CNN
models.

4.3.7 Effect of parameters
We first show how the number of PVs affect the classifica-
tion performance using the RAR dataset.

σ F1 Accuracy
10% 0.912 0.925
20% 0.933 0.962
30% 0.946 0.971
50% 0.948 0.970

TABLE 16: Classification performance (F1, Accuracy) us-
ing PVs selected by CNNmts-LR (RAR dataset, CNNmts

classifier, ten-fold)

Table 16 reports the F1 and Accuracy from the ten-
fold cross validation and for all the event types. It can be
observed that the performance improves with the increase
of σ. However, when σ is more than 30%, the performance
increase does not grow much. More parameter analysis can
be found from Appendix C.

4.4 Efficiency Analysis
This section shows (a) the running time of different PV iden-
tification methods, (b) the time to train different classifiers
using sequences for PVs, and (c) the time to predict the event
type of one testing instance for different datasets.

DSA RAR ARC ASL
Time (sec.) CNNmts PVI CNNmts PVI CNNmts PVI CNNmts PVI

CNNmts-LR 7733 39 18490 375 26624 398 32110 41
FCN-LR 8973 33 19217 298 25761 417 32110 47

CNNmts-LDA 7733 9 18490 136 26624 153 32110 36
CNNmts-PCA 7733 5 18490 24 26624 51 32110 7

CNNmts-CPCA 7733 9 18490 31 26624 59 32110 14
CNNmts-RF 7733 11 18490 130 26624 145 32110 29

LR 0 1049 0 832 0 1211 0 128
LDA 0 788 0 404 0 625 0 101
PCA 0 54 0 44 0 130 0 21

CPCA 0 61 0 47 0 141 0 28
RF 0 180 0 363 0 429 0 33

TABLE 17: Averaged time to build CNNmts-X framework
using one fold of the data

Time (sec.) DSA RAR ARC ARCfixed ASL
CNNmts 4643 5361 13288 8617 3135

KNN 0 0 0 0 0
LibSVM 687 3623 26636 6671 376

RF 36 36 199 173 7
(a) Training time using one fold of the data

Time (sec.) DSA RAR ARC ARCfixed ASL
CNNmts 0.010 0.004 0.003 0.002 0.040

KNN 0.367 0.956 1.881 0.931 0.203
LibSVM 0.078 0.087 0.058 0.036 0.065

RF 2.266 × 10−55.660 × 10−56.536 × 10−56.577 × 10−52.78 × 10−4

(b) Testing time for one instance

TABLE 18: Running time of PVC algorithm

Table 17 presents the averaged running time for build-
ing the CNNmts-X framework using one fold of the four
datasets. The running time for CNNmts-X on ARCfixed is
not included in Table 17 due to the table width limitation.
This time consists of the running time for constructing
the CNNmts model using all the attributes (Section 3.1)
and the PVI algorithm (Section 3.2). The results show that
the CNNmts model construction utilizes the majority of
the time due to their known long training time. The LR
method’s running time is approximately the summation of
the running time of LDA and RF. LDA and RF use more time
than PCA because LDA and RF need to be conducted on all
the instances for E times while the PCA methods are only
applied to a subset of instances E times. Table 18 reports
the training time of PVC using one fold of the dataset
and the testing time for one instance. Note that KNN does
not use any training time. The prediction/testing time per
instance (Table 18(b)) is almost ignorable compared to the
PV identification time. As expected, the KNN methods use
more testing time than other methods. Please note that the
CNNmts time is the running time for all the phenomena
(evens) and this training typically happens offline.

5 RELATED WORKS

Identifying significant variables is highly related to feature
extraction. The problem of feature extraction has been exten-
sively investigated in the past several decades. For example,
Principal Component Analysis (PCA) [22] [37] and Linear
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Discriminant Analysis [9] are among the commonly used
feature extraction techniques proposed in earlier days. How-
ever, both methods cannot be directly utilized to identify
significant PVs because they cannot treat one time series as
a variable directly.

More recent techniques of identifying features from se-
quence data (e.g., [4], [5], [6], [7]) generally convert the
sequence to a set of features and analyze the data in the
feature space. Most of the identified features cannot pre-
serve the temporal continuity information that is explicit in
the original sequence data. Among the works of extracting
features from sequence data, the Shapelets feature, intro-
duced in [7], can preserve the temporal order of points
in a time series. Shapelets discovery has gained exploding
interest from independent research groups (e.g., [4], [7], [35],
[36], [38], [39], [40], [41]) to analyze time series data. The
methods that extract Shapelet features cannot be directly
used to solve our problem either because the purpose of
Shapelet extraction is to get global Shapelet features that can
help achieve high accuracy of classification tasks, while our
problem is to find variable subsets that can contribute the
most to specific event types. Furthermore, the extraction of
shapelets from multiple sequences dramatically complicates
the Shapelet extraction algorithms which are already very
complex even on single-sequence instances.

Techniques that classify multi-class datasets (e.g., [42])
typically focus on improving classification accuracy and do
not study the importance of different variables for different
classes.

Subspace clustering such as projected clustering [1] has
been studied based on the similar rationale of PV identifica-
tion. It identifies clusters from a dataset such that the points
in one cluster are close regarding a subset of dimensions.
The dimension subsets are generally different for different
clusters. Although having similar intention, the results of
projected clustering do not keep the temporal order of the
selected dimensions, which cannot be used to identify PVs.

Recent works (e.g., [12], [13], [14], [15], [43]) have uti-
lized convolutional neural networks (CNN) in the analysis
of MTS data. Most of these methods focus on improving
classification accuracy or learning the CNN structure. Thus,
they cannot be directly utilized to solve our problem.

6 CONCLUSIONS

In this paper, we introduced a new problem of identifying
significant Phenomena-specific variables (PVs) from MTS
data. This problem selects significant variables that are
important to different event types of the data. To solve
this problem, we proposed a novel CNNmts-X framework.
In this framework, a new variant of convolutional neural
networks, CNNmts, is designed to convert each variable’s
corresponding sequence to independent features. The X in
this framework can be other feature detection technology.
We also designed a new LR approach to be used in this
CNNmts-X framework for the identification of important
PVs. The results from extensive experiments on four real
datasets by comparing CNNmts-LR with seven baseline
methods show that (i) our CNNmts-LR method can identify
more useful PVs than other methods, (ii) 30% of the PVs
found from CNNmts-LR are able to carry almost all import

information as all the variables, and (iii) the CNNmts with
a new batch processing strategy outperforms typical CNN
models when classifying imbalanced multi-class MTS data.
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APPENDIX A
ADDITIONAL TABLES AND FIGURES FOR SECTION
4.3.1
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Fig. 8: F1 for all event types on DSA (Top 30% of the PVs
are selected by the top 4 PVI approaches)

Table 19 shows the accuracy results for evaluating the
effect of PVs selected by the ten PV selection approaches
in Section 4.3.1. Figure 8 to Figure 12 show the details F1

values for all event types by the top 4 PVI methods.

APPENDIX B
ADDITIONAL TABLES AND FIGURES FOR SECTION
4.3.2

Table 20 shows the accuracy results for comparing the effect
of the proposed approach CNNmts-LR with the FCN-LR
approach.
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Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.961 [1] 0.971 [1] 0.982 [1] 0.889 [1] 0.797 [1]

CNNmts-LDA 0.942 [3] 0.969 [2] 0.979 [7] 0.880 [5] 0.347[9]
CNNmts-PCA 0.879 [10] 0.956 [3] 0.982 [1] 0.832 [9] 0.511[6]

CNNmts-CPCA 0.907 [7] 0.906 [7] 0.980 [4] 0.833 [8] 0.319 [10]
CNNmts-RF 0.933 [4] 0.946 [4] 0.980 [4] 0.885 [4] 0.591 [4]

LR 0.944 [2] 0.907 [6] 0.980 [4] 0.888 [2] 0.762[3]
LDA 0.926 [5] 0.717 [10] 0.977 [8] 0.887 [3] 0.423[8]
PCA 0.882 [9] 0.905 [8] 0.976 [9] 0.818 [10] 0.498[7]
CPCA 0.889[8] 0.902[9] 0.950 [10] 0.879[6] 0.515 [5]

RF 0.924 [6] 0.942 [5] 0.981 [3] 0.876 [7] 0.773 [2]
(a) CNNmts classifier (CNNmts-LR always ranks top 1)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.898 [2] 0.900 [2] 0.981 [3] 0.856 [3] 0.562 [2]

CNNmts-LDA 0.738 [7] 0.909 [1] 0.967 [5] 0.853 [4] 0.347[5]
CNNmts-PCA 0.774 [4] 0.894 [3] 0.959 [7] 0.809 [7] 0.297 [7]

CNNmts-CPCA 0.720 [8] 0.813 [7] 0.955 [9] 0.802 [9] 0.258 [10]
CNNmts-RF 0.684 [10] 0.837 [6] 0.979 [4] 0.858 [2] 0.591 [1]

LR 0.884 [3] 0.780 [9] 0.984 [1] 0.846 [5] 0.501 [4]
LDA 0.917 [1] 0.658 [10] 0.967 [5] 0.866 [1] 0.313 [6]
PCA 0.744 [6] 0.845 [5] 0.956 [8] 0.809 [7] 0.288 [9]
CPCA 0.709 [8] 0.797[8] 0.940 [10] 0.794 [10] 0.292 [8]

RF 0.764 [5] 0.870 [4] 0.983 [2] 0.844 [6] 0.529 [3]
(b) KNN classifier (CNNmts-LR always ranks top 3)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.768 [1] 0.649 [2] 0.910 [1] 0.840 [3] 0.207 [2]

CNNmts-LDA 0.529 [7] 0.469 [6] 0.854 [8] 0.805 [7] 0.071 [7]
CNNmts-PCA 0.353 [10] 0.267 [10] 0.883 [6] 0.794 [9] 0.060 [8]

CNNmts-CPCA 0.547 [6] 0.376 [8] 0.891 [4] 0.833 [4] 0.075 [6]
CNNmts-RF 0.561 [4] 0.522 [4] 0.898 [3] 0.805 [7] 0.219 [1]

LR 0.683 [3] 0.662 [1] 0.903 [2] 0.852 [2] 0.163 [4]
LDA 0.548 [5] 0.412 [7] 0.853 [9] 0.854 [1] 0.090 [5]
PCA 0.466 [9] 0.529 [3] 0.848 [10] 0.790 [10] 0.005 [10]
CPCA 0.501 [8] 0.521[5] 0.883 [6] 0.830 [5] 0.060 [8]

RF 0.757 [2] 0.332 [9] 0.891 [4] 0.808 [6] 0.182 [3]
(c) LibSVM classifier (CNNmts-LR always ranks top 3)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.913 [2] 0.897 [2] 0.949 [2] 0.889 [1] 0.667 [1]

CNNmts-LDA 0.906 [4] 0.920 [1] 0.923 [6] 0.880 [5] 0.503 [5]
CNNmts-PCA 0.841 [10] 0.894 [3] 0.868 [9] 0.832 [8] 0.339 [8]

CNNmts-CPCA 0.852 [9] 0.760 [10] 0.860 [10] 0.790 [10] 0.347 [7]
CNNmst- RF 0.909 [3] 0.868 [6] 0.949 [2] 0.885 [4] 0.656 [3]

LR 0.915 [1] 0.887 [4] 0.953 [1] 0.888 [2] 0.645 [4]
LDA 0.899 [6] 0.833 [7] 0.941 [5] 0.887 [3] 0.453 [6]
PCA 0.899 [6] 0.784 [8] 0.922 [7] 0.818 [9] 0.307 [10]
CPCA 0.872 [8] 0.766 [9] 0.914 [8] 0.840 [7] 0.314 [9]

RF 0.906 [4] 0.874 [5] 0.946 [4] 0.876 [6] 0.665 [2]
(d) RF classifier (CNNmts-LR always ranks top 2)

TABLE 19: Overall Accuracy for different variable selec-
tion methods (Top 30% of PVs are selected). The values in
[] denote the ranks of the classifier in a row to classify the
dataset in a column.

APPENDIX C
ADDITIONAL TABLES AND FIGURES FOR SECTION
4.3.3
Table 21 shows the accuracy results for evaluating the per-
formance of the PVs found using the proposed CNNmts-
LR method, CNNmts-LR-GV and All-variables. Figure 13 to
Figre 17 shows the detail F1 values for all event types using
all the variables, top 30% of PVs, and top 30% of GVs.

APPENDIX D
MORE PARAMETER ANALYSIS FOR SECTION 4.3.7
We evaluate the performance of the KNN classifier with
varying K values (Fig. 18). The results show that KNN with
K = 1 returns the best averaged F1 for all four datasets and
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(d) RF with CNNmts-X

Fig. 9: F1 for all event types on RAR (Top 30% of the PVs
are selected by the top 4 PVI methods)
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(b) KNN with CNNmts-X
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(c) LibSVM with CNNmts-X
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Fig. 10: F1 for all event types on ARC (Top 30% of the PVs
are selected by the top 4 PVI approaches)

the averaged F1 reduces with the increase of K . So we set
K = 1 for our KNN classifier.
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0 2 4 6 8 10 12 14 16
class

0.2

0.4

0.6

0.8

1.0

F 1
CNNmts­LR
CNNmts­RF

CNNmts­LDA
RF

(b) KNN with CNNmts-X
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(d) RF with CNNmts-X

Fig. 11: F1 for all event types on ARCfixed (Top 30% of the
PVs are selected by the top 4 PVI methods)
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(b) KNN with CNNmts-X
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(d) RF with CNNmts-X

Fig. 12: F1 for all event types on ASL (Top 30% of the PVs
are selected by the top 4 PVI methods)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.961 0.971 0.982 0.889 0.797

FCN-LR 0.893 0.965 0.953 0.884 0.778
(a) CNNmts classifier (CNNmts-LR always ranks top 1)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.898 0.900 0.981 0.856 0.562

FCN-LR 0.739 0.875 0.979 0.845 0.511
(b) KNN classifier (CNNmts-LR always ranks top 3)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.768 0.649 0.910 0.840 0.207

FCN-LR 0.512 0.524 0.913 0.833 0.200
(c) LibSVM classifier (CNNmts-LR always ranks top 3)

Method DSA RAR ARC ARCfixed ASL
CNNmts-LR 0.913 0.897 0.949 0.889 0.667

FCN-LR 0.915 0.884 0.949 0.878 0.633
(d) RF classifier (CNNmts-LR always ranks top 2)

TABLE 20: Accuracy comparison using the top 30% PVs
from CNNmts-LR and FCN-LR.

Method DSA RAR ARC ARCfixed ASL
All-variables 0.978 0.975 0.988 0.859 0.811
CNNmts-LR 0.961 0.971 0.982 0.889 0.797

CNNmts-LR-GV 0.922 0.878 0.947 0.660 0.603
(a) CNNmts classifier

Method DSA RAR ARC ARCfixed ASL
All-variables 0.791 0.903 0.969 0.807 0.654
CNNmts-LR 0.898 0.900 0.981 0.856 0.562

CNNmts-LR-GV 0.759 0.759 0.863 0.681 0.371
(b) KNN classifier

Method DSA RAR ARC ARCfixed ASL
All-variables 0.547 0.579 0.906 0.804 0.231
CNNmts-LR 0.768 0.649 0.910 0.840 0.207

CNNmts-LR-GV 0.556 0.527 0.696 0.709 0.118
(c) LibSVM classifier

Method DSA RAR ARC ARCfixed ASL
All-variables 0.936 0.860 0.950 0.859 0.668
CNNmts-LR 0.913 0.897 0.949 0.889 0.667

CNNmts-LR-GV 0.881 0.755 0.878 0.660 0.419
(d) RF classifier

TABLE 21: Accuracy (Classification using all the vari-
ables, top 30% of PVs, and top 30% of GVs)
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(b) KNN classifier
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(c) LibSVM classifier
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(d) RF classifier

Fig. 13: F1 for different event types on DSA (Classification
using all the variables, top 30% of PVs, and top 30% of
GVs)
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(a) CNNmts classifier
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(b) KNN classifier
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(c) LibSVM classifier
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(d) RF classifier

Fig. 14: F1 for different event types on RAR (Classification
using all the variables, top 30% of PVs, and top 30% of
GVs)
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(a) CNNmts classifier
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(b) KNN classifier
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(c) LibSVM classifier

0 2 4 6 8 10 12 14 16
class

0.2

0.4

0.6

0.8

1.0

F 1

All­variables
CNNmts­LR­GV

CNNmts­LR

(d) RF classifier

Fig. 15: F1 for different event types on ARC (Classification
using all the variables, top 30% of PVs, and top 30% of
GVs)
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(a) CNNmts classifier
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(b) KNN classifier
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(c) LibSVM classifier
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(d) RF classifier

Fig. 16: F1 for different event types on ARCfixed (Classi-
fication using all the variables, top 30% of PVs, and top
30% of GVs)
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(a) CNNmts classifier
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(d) RF classifier

Fig. 17: F1 for different event types on ASL (Classification
using all the variables, top 30% of PVs, and top 30% of
GVs)
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Fig. 18: KNN with varying K


